Namespaces
Variants
Actions

Boyd index

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The lower and upper Boyd indices of a rearrangement-invariant function space $ X $ on $ [ 0, \infty ) $ or $ [ 0,1 ] $ are defined by the respective formulas [a1]

$$ \alpha _ {X} = {\lim\limits } _ {t \rightarrow 0 } { \frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t } } $$

and

$$ \beta _ {X} = {\lim\limits } _ {t \rightarrow \infty } { \frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t } } . $$

Here $ D _ {t} $, $ t > 0 $, is the dilation operator, i.e.

$$ D _ {t} f ( x ) = f \left ( { \frac{x}{t} } \right ) , $$

for a measurable function $ f $ on $ [ 0, \infty ) $, while for an $ f $ on $ [ 0,1 ] $,

$$ D _ {t} f ( x ) = \left \{ \begin{array}{l} {f ( { \frac{x}{t} } ) \ \textrm{ if } x \leq { \mathop{\rm min} } ( 1,t ) , } \\ {0 \ \textrm{ if } t < x \leq 1. } \end{array} \right . $$

This operator is bounded in every rearrangement-invariant space $ X $ and the expression $ \| {D _ {t} } \| _ {X} $ is its norm in $ X $. The limits exist and $ 0 \leq \alpha _ {X} \leq \beta _ {X} \leq 1 $. Sometimes the indices are taken in the form $ p _ {X} = {1 / {\beta _ {X} } } $ and $ q _ {X} = {1 / {\alpha _ {X} } } $[a2].

There are many applications of Boyd indices. The first one was made by D.W. Boyd [a1], who proved an interpolation theorem which gives, in terms of $ \alpha _ {X} $ and $ \beta _ {X} $, the conditions for a linear operator of a weak type to be bounded in $ X $( cf. also Interpolation of operators).

A necessary and sufficient condition for some classical operators to be bounded in $ X $ may be also obtained in terms of Boyd indices. For example, the Hardy–Littlewood operator

$$ Hf ( x ) = { \frac{1}{x} } \int\limits _ { 0 } ^ { x } {f ( t ) } {dt } $$

is bounded in $ X $ if and only if $ \beta _ {X} < 1 $[a3].

An important property of the class of rearrangement-invariant spaces with non-trivial Boyd indices was discovered in [a4]. Let $ X $ be a rearrangement-invariant space on $ [ 0,1 ] $ and denote by $ Y $ the space of all measurable functions on $ [ 0, \infty ) $ such that $ f ^ {*} \chi _ {[ 0,1 ] } \in X $ and $ f ^ {*} \chi _ {( 1, \infty ) } \in L _ {2} ( 1, \infty ) $, where $ f ^ {*} $ is the decreasing rearrangement (cf. also Marcinkiewicz space) of $ | f | $ and $ \chi _ {A} $ denotes the indicator of the set $ A $. Put

$$ \left \| f \right \| _ {Y} = $$

$$ = \max \left \{ \left \| {f ^ {*} \chi _ {[ 0,1 ] } } \right \| _ {X} , \left ( \sum _ {k = 0 } ^ \infty \left ( \int\limits _ { k } ^ { {k } + 1 } {f ^ {*} ( x ) } {dx } \right ) ^ {2} \right ) ^ {1/2 } \right \} . $$

If the strong inequalities $ 0 < \alpha _ {X} \leq \beta _ {X} < 1 $ take place, then the spaces $ X $ and $ Y $ are isomorphic. In other words, $ X $ admits a representation as a rearrangement-invariant space on $ [ 0, \infty ) $.

References

[a1] D.W. Boyd, "Indices of function spaces and their relationship to interpolation" Canadian J. Math. , 21 (1969) pp. 1245–1254
[a2] J. Lindenstrauss, L. Tzafriri, "Classical Banach spaces" , II. Function spaces , Springer (1979)
[a3] S.G. Krein, E.M. Semenov, Yu.I. Petunin, "Interpolation of linear operators" , Transl. Math. Monograph , 54 , Amer. Math. Soc. (1982) (In Russian)
[a4] W.B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, "Symmetric structures in Banach spaces" , Memoirs , 217 , Amer. Math. Soc. (1979) pp. 1–298
How to Cite This Entry:
Boyd index. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boyd_index&oldid=46142
This article was adapted from an original article by M. Braverman (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article