Namespaces
Variants
Actions

Difference between revisions of "Bose-Einstein statistics"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
b0172101.png
 +
$#A+1 = 42 n = 0
 +
$#C+1 = 42 : ~/encyclopedia/old_files/data/B017/B.0107210 Bose\ANDEinstein statistics,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Bose statistics''
 
''Bose statistics''
  
Quantum statistics used in systems of identical particles with integral spin (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b0172101.png" /> in the unit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b0172102.png" />). Presented by S. Bose and A. Einstein in 1924. According to these statistics an arbitrary number of particles may be found in each quantum state. It was shown by W. Pauli that the type of quantum statistics is directly related to the particle spin, since the population of particles with an integral spin obeys the Bose–Einstein statistics, while those with half-integral spin obey the [[Fermi–Dirac statistics|Fermi–Dirac statistics]].
+
Quantum statistics used in systems of identical particles with integral spin ( 0, 1 \dots $
 +
in the unit $  \APh = 1.05 \times 10  ^ {-27} erg \times sec $).  
 +
Presented by S. Bose and A. Einstein in 1924. According to these statistics an arbitrary number of particles may be found in each quantum state. It was shown by W. Pauli that the type of quantum statistics is directly related to the particle spin, since the population of particles with an integral spin obeys the Bose–Einstein statistics, while those with half-integral spin obey the [[Fermi–Dirac statistics|Fermi–Dirac statistics]].
  
 
The state of a system of many particles is defined in quantum mechanics by a wave function which, in the case of identical particles, may be symmetric with respect to the rearrangement of any pair of particles (for particles with integral spin) or anti-symmetric (for particles with half-integral spin). For a system of particles obeying the Bose–Einstein statistics the states are described by symmetric wave functions. This is a second, equivalent, formulation of the Bose–Einstein statistics. Systems of a large number of particles obeying Bose–Einstein statistics are known as Bose systems (e.g. a Bose gas).
 
The state of a system of many particles is defined in quantum mechanics by a wave function which, in the case of identical particles, may be symmetric with respect to the rearrangement of any pair of particles (for particles with integral spin) or anti-symmetric (for particles with half-integral spin). For a system of particles obeying the Bose–Einstein statistics the states are described by symmetric wave functions. This is a second, equivalent, formulation of the Bose–Einstein statistics. Systems of a large number of particles obeying Bose–Einstein statistics are known as Bose systems (e.g. a Bose gas).
  
For an ideal quantum gas, i.e. for a system of identical particles with mass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b0172103.png" /> which do not interact, in a cube of volume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b0172104.png" /> the quantum energy levels for single particles are given by
+
For an ideal quantum gas, i.e. for a system of identical particles with mass $  m $
 +
which do not interact, in a cube of volume $  V = L  ^ {3} $
 +
the quantum energy levels for single particles are given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b0172105.png" /></td> </tr></table>
+
$$
 +
\epsilon _ {p}  =
 +
\frac{p  ^ {2} }{2m }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b0172106.png" /> are the eigen values of the momentum of the individual particle: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b0172107.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b0172108.png" /> is a vector with integer (positive, negative or zero) components.
+
where $  p $
 +
are the eigen values of the momentum of the individual particle: $  p = 2 \pi \APh n/L $,  
 +
where $  n $
 +
is a vector with integer (positive, negative or zero) components.
  
The quantum state of an ideal gas is defined by specifying the population of occupation numbers of the levels <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b0172109.png" />, where each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721010.png" /> is the number of particles in the one-particle state <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721011.png" />. For Bose systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721012.png" />.
+
The quantum state of an ideal gas is defined by specifying the population of occupation numbers of the levels $  \{ n _ {p} \} $,  
 +
where each $  n _ {p} $
 +
is the number of particles in the one-particle state $  p $.  
 +
For Bose systems $  n _ {p} = 0, 1 , . . . $.
  
For large systems the energy levels are very densely located and tend to form a continuous spectrum as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721013.png" />. Let the levels be grouped by small cells, containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721014.png" /> levels per cell. To each cell corresponds the average energy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721015.png" />, and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721016.png" /> is assumed to be very large. The state of the system is defined by the selection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721018.png" /> is the sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721019.png" /> taken over the levels of the cell. The statistical weight, that is, the number of different particle distributions over the cells, is
+
For large systems the energy levels are very densely located and tend to form a continuous spectrum as $  V \rightarrow \infty $.  
 +
Let the levels be grouped by small cells, containing $  G _ {i} $
 +
levels per cell. To each cell corresponds the average energy $  \epsilon _ {i} $,  
 +
and the number $  G _ {i} $
 +
is assumed to be very large. The state of the system is defined by the selection $  \{ N _ {i} \} $,  
 +
where $  N _ {i} $
 +
is the sum of $  n _ {p} $
 +
taken over the levels of the cell. The statistical weight, that is, the number of different particle distributions over the cells, is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721020.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
W \{ N _ {i} \}  = \
 +
\prod _ { i }
  
and defines the probability of the particle distribution over the cells, characterized by the occupation numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721021.png" />.
+
\frac{(G _ {i} +N _ {i} -1)! }{N _ {i} ! (G _ {i} -1)! }
  
The most-probable distribution corresponding to a given energy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721022.png" /> and number of particles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721023.png" />:
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721024.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
and defines the probability of the particle distribution over the cells, characterized by the occupation numbers  $  N _ {1} , N _ {2} ,\dots $.
 +
 
 +
The most-probable distribution corresponding to a given energy  $  E $
 +
and number of particles  $  N $:
 +
 
 +
$$ \tag{2 }
 +
= \sum _ { i }
 +
\epsilon _ {i} N _ {i} ,\ \
 +
= \sum _ { i } N _ {i} ,
 +
$$
  
 
is found from the extremum of (1) under the complementary conditions (2). The corresponding average occupation numbers are
 
is found from the extremum of (1) under the complementary conditions (2). The corresponding average occupation numbers are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721025.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\overline{n}\; _ {i}  = \
 +
 
 +
\frac{\overline{N}\; }{G _ {i} }
 +
  = \
 +
{
 +
\frac{1}{e ^ {\beta ( \epsilon _ {i} - \mu ) } }
 +
-1 } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721026.png" /> is the chemical potential, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721028.png" /> is the Boltzmann constant (a universal constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721029.png" />), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721030.png" /> is the absolute temperature. The values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721032.png" /> can be found from the conditions (2).
+
where $  \mu $
 +
is the chemical potential, $  \beta = 1/kT $,  
 +
$  k $
 +
is the Boltzmann constant (a universal constant $  k = 1.38 \times 10  ^ {-16} erg/degree $),  
 +
and $  T $
 +
is the absolute temperature. The values of $  \beta $
 +
and $  \mu $
 +
can be found from the conditions (2).
  
 
The entropy of the system is defined as the logarithm of the statistical weight (1) for the most-probable distribution (3):
 
The entropy of the system is defined as the logarithm of the statistical weight (1) for the most-probable distribution (3):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721033.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
= k  \mathop{\rm ln}  W \{ \overline{n}\; _ {i} \}  = \
 +
k \sum _ { i } G _ {i} \left \{
 +
\overline{n}\; _ {i}  \mathop{\rm ln} \left ( 1+ {
 +
\frac{1}{\overline{n}\; _ {i} }
 +
} \right ) +
 +
\mathop{\rm ln} (1+ \overline{n}\; _ {i} ) \right \} .
 +
$$
  
 
Other thermodynamic functions may be derived from the entropy and the average energy.
 
Other thermodynamic functions may be derived from the entropy and the average energy.
  
The usual approach to Bose–Einstein statistics consists in employing the large canonical [[Gibbs distribution|Gibbs distribution]] for the probability <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721034.png" /> of the quantum level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721035.png" /> of the entire system being filled
+
The usual approach to Bose–Einstein statistics consists in employing the large canonical [[Gibbs distribution|Gibbs distribution]] for the probability $  w _ {n} $
 +
of the quantum level $  n $
 +
of the entire system being filled
 +
 
 +
$$ \tag{5 }
 +
w _ {n}  =  Q  ^ {-1}
 +
\mathop{\rm exp} \left \{
 +
-
 +
\frac{E _ {n} - \mu N }{kT }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721036.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
\right \} ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
$$ \tag{6 }
 +
= \sum _ { n }
 +
\mathop{\rm exp} \left \{ -
 +
 
 +
\frac{E _ {n} - \mu N }{kT }
 +
 
 +
\right \}
 +
$$
 +
 
 +
is the sum over states, or partition function, and  $  E _ {n} $
 +
are the energy levels of the entire system. Thus, for instance, for an ideal Bose gas
 +
 
 +
$$
 +
E _ {n}  = \
 +
\sum _ { p }
  
is the sum over states, or partition function, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721038.png" /> are the energy levels of the entire system. Thus, for instance, for an ideal Bose gas
+
\frac{p  ^ {2} }{2m }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721039.png" /></td> </tr></table>
+
n _ {p} ,\ \
 +
= \{ n _ {p} \} ,\ \
 +
n _ {p} = 0, 1 \dots
 +
$$
  
and from equations (5) and (6) formula (3) for the occupation numbers, and formula (4) for the entropy can be found, without the use of combinatorial analysis. Such an approach is particularly important in the case of non-ideal Bose systems, when the use of Bose–Einstein statistics cannot be reduced to a simple combinatorial problem. In such a case the requirements of Bose–Einstein statistics can be met if for the Hamilton operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721040.png" /> the representation of second quantization is used, in which its action is defined on the space of symmetric wave functions or on the space of occupation numbers. The sum over states will then be
+
and from equations (5) and (6) formula (3) for the occupation numbers, and formula (4) for the entropy can be found, without the use of combinatorial analysis. Such an approach is particularly important in the case of non-ideal Bose systems, when the use of Bose–Einstein statistics cannot be reduced to a simple combinatorial problem. In such a case the requirements of Bose–Einstein statistics can be met if for the Hamilton operator $  H $
 +
the representation of second quantization is used, in which its action is defined on the space of symmetric wave functions or on the space of occupation numbers. The sum over states will then be
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721041.png" /></td> </tr></table>
+
$$
 +
=   \mathop{\rm Sp}  \mathop{\rm exp} \left \{
 +
-
 +
\frac{H - \mu N }{kT}
 +
\right \} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017210/b01721042.png" /> is the operator for the number of particles; this sum may be used to find all the thermodynamic functions of the Bose system.
+
where $  N $
 +
is the operator for the number of particles; this sum may be used to find all the thermodynamic functions of the Bose system.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  K. Huang,  "Statistical mechanics" , Wiley  (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Kubo,  "Statistical mechanics" , North-Holland  (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Statistical physics" , Pergamon  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E. Schrödinger,  "Statistical thermodynamics" , Cambridge Univ. Press  (1948)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.N. Bogolyubov,  "Lectures on quantum statistics" , Gordon &amp; Breach  (1967)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  K. Huang,  "Statistical mechanics" , Wiley  (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Kubo,  "Statistical mechanics" , North-Holland  (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Statistical physics" , Pergamon  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E. Schrödinger,  "Statistical thermodynamics" , Cambridge Univ. Press  (1948)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.N. Bogolyubov,  "Lectures on quantum statistics" , Gordon &amp; Breach  (1967)  (Translated from Russian)</TD></TR></table>

Latest revision as of 06:28, 30 May 2020


Bose statistics

Quantum statistics used in systems of identical particles with integral spin ( $ 0, 1 \dots $ in the unit $ \APh = 1.05 \times 10 ^ {-27} erg \times sec $). Presented by S. Bose and A. Einstein in 1924. According to these statistics an arbitrary number of particles may be found in each quantum state. It was shown by W. Pauli that the type of quantum statistics is directly related to the particle spin, since the population of particles with an integral spin obeys the Bose–Einstein statistics, while those with half-integral spin obey the Fermi–Dirac statistics.

The state of a system of many particles is defined in quantum mechanics by a wave function which, in the case of identical particles, may be symmetric with respect to the rearrangement of any pair of particles (for particles with integral spin) or anti-symmetric (for particles with half-integral spin). For a system of particles obeying the Bose–Einstein statistics the states are described by symmetric wave functions. This is a second, equivalent, formulation of the Bose–Einstein statistics. Systems of a large number of particles obeying Bose–Einstein statistics are known as Bose systems (e.g. a Bose gas).

For an ideal quantum gas, i.e. for a system of identical particles with mass $ m $ which do not interact, in a cube of volume $ V = L ^ {3} $ the quantum energy levels for single particles are given by

$$ \epsilon _ {p} = \frac{p ^ {2} }{2m } , $$

where $ p $ are the eigen values of the momentum of the individual particle: $ p = 2 \pi \APh n/L $, where $ n $ is a vector with integer (positive, negative or zero) components.

The quantum state of an ideal gas is defined by specifying the population of occupation numbers of the levels $ \{ n _ {p} \} $, where each $ n _ {p} $ is the number of particles in the one-particle state $ p $. For Bose systems $ n _ {p} = 0, 1 , . . . $.

For large systems the energy levels are very densely located and tend to form a continuous spectrum as $ V \rightarrow \infty $. Let the levels be grouped by small cells, containing $ G _ {i} $ levels per cell. To each cell corresponds the average energy $ \epsilon _ {i} $, and the number $ G _ {i} $ is assumed to be very large. The state of the system is defined by the selection $ \{ N _ {i} \} $, where $ N _ {i} $ is the sum of $ n _ {p} $ taken over the levels of the cell. The statistical weight, that is, the number of different particle distributions over the cells, is

$$ \tag{1 } W \{ N _ {i} \} = \ \prod _ { i } \frac{(G _ {i} +N _ {i} -1)! }{N _ {i} ! (G _ {i} -1)! } $$

and defines the probability of the particle distribution over the cells, characterized by the occupation numbers $ N _ {1} , N _ {2} ,\dots $.

The most-probable distribution corresponding to a given energy $ E $ and number of particles $ N $:

$$ \tag{2 } E = \sum _ { i } \epsilon _ {i} N _ {i} ,\ \ N = \sum _ { i } N _ {i} , $$

is found from the extremum of (1) under the complementary conditions (2). The corresponding average occupation numbers are

$$ \tag{3 } \overline{n}\; _ {i} = \ \frac{\overline{N}\; }{G _ {i} } = \ { \frac{1}{e ^ {\beta ( \epsilon _ {i} - \mu ) } } -1 } , $$

where $ \mu $ is the chemical potential, $ \beta = 1/kT $, $ k $ is the Boltzmann constant (a universal constant $ k = 1.38 \times 10 ^ {-16} erg/degree $), and $ T $ is the absolute temperature. The values of $ \beta $ and $ \mu $ can be found from the conditions (2).

The entropy of the system is defined as the logarithm of the statistical weight (1) for the most-probable distribution (3):

$$ \tag{4 } S = k \mathop{\rm ln} W \{ \overline{n}\; _ {i} \} = \ k \sum _ { i } G _ {i} \left \{ \overline{n}\; _ {i} \mathop{\rm ln} \left ( 1+ { \frac{1}{\overline{n}\; _ {i} } } \right ) + \mathop{\rm ln} (1+ \overline{n}\; _ {i} ) \right \} . $$

Other thermodynamic functions may be derived from the entropy and the average energy.

The usual approach to Bose–Einstein statistics consists in employing the large canonical Gibbs distribution for the probability $ w _ {n} $ of the quantum level $ n $ of the entire system being filled

$$ \tag{5 } w _ {n} = Q ^ {-1} \mathop{\rm exp} \left \{ - \frac{E _ {n} - \mu N }{kT } \right \} , $$

where

$$ \tag{6 } Q = \sum _ { n } \mathop{\rm exp} \left \{ - \frac{E _ {n} - \mu N }{kT } \right \} $$

is the sum over states, or partition function, and $ E _ {n} $ are the energy levels of the entire system. Thus, for instance, for an ideal Bose gas

$$ E _ {n} = \ \sum _ { p } \frac{p ^ {2} }{2m } n _ {p} ,\ \ n = \{ n _ {p} \} ,\ \ n _ {p} = 0, 1 \dots $$

and from equations (5) and (6) formula (3) for the occupation numbers, and formula (4) for the entropy can be found, without the use of combinatorial analysis. Such an approach is particularly important in the case of non-ideal Bose systems, when the use of Bose–Einstein statistics cannot be reduced to a simple combinatorial problem. In such a case the requirements of Bose–Einstein statistics can be met if for the Hamilton operator $ H $ the representation of second quantization is used, in which its action is defined on the space of symmetric wave functions or on the space of occupation numbers. The sum over states will then be

$$ Q = \mathop{\rm Sp} \mathop{\rm exp} \left \{ - \frac{H - \mu N }{kT} \right \} , $$

where $ N $ is the operator for the number of particles; this sum may be used to find all the thermodynamic functions of the Bose system.

References

[1] K. Huang, "Statistical mechanics" , Wiley (1963)
[2] R. Kubo, "Statistical mechanics" , North-Holland (1967)
[3] L.D. Landau, E.M. Lifshitz, "Statistical physics" , Pergamon (1980) (Translated from Russian)
[4] E. Schrödinger, "Statistical thermodynamics" , Cambridge Univ. Press (1948)
[5] N.N. Bogolyubov, "Lectures on quantum statistics" , Gordon & Breach (1967) (Translated from Russian)
How to Cite This Entry:
Bose-Einstein statistics. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bose-Einstein_statistics&oldid=18034
This article was adapted from an original article by D.N. Zubarev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article