Namespaces
Variants
Actions

Borel transform

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An integral transform of the type

$$ \gamma (t) = \int\limits _ { 0 } ^ \infty f(z)e ^ {-zt} dz, $$

where $ f(z) $ is an entire function of exponential type. The Borel transform is a special case of the Laplace transform. The function $ \gamma (t) $ is called the Borel transform of $ f(z) $. If

$$ f(z) = \sum _ { n=0 } ^ \infty \frac{a _ {n} }{n!} z ^ {n} , $$

then

$$ \gamma (t) = \sum _ { v=0 } ^ \infty a _ {v} t ^ {-(v+1) } ; $$

the series converges for $ | t | > \sigma $, where $ \sigma $ is the type of $ f(z) $. Let $ \overline{D}\; $ be the smallest closed convex set containing all the singularities of the function $ \gamma (t) $; let

$$ K( \phi ) = \max _ {z \in \overline{D}\; } \ \mathop{\rm Re} (ze ^ {-i \phi } ) $$

be the supporting function of $ \overline{D}\; $; and let $ h ( \phi ) $ be the growth indicator function of $ f(z) $; then $ K( \phi ) = h( - \phi ) $. If in a Borel transform the integration takes place over a ray $ \mathop{\rm arg} z = \phi $, the corresponding integral will converge in the half-plane $ x \cos \phi + y \sin \phi > K ( - \phi ) $. Let $ C $ be a closed contour surrounding $ \overline{D}\; $; then

$$ f(z) = \frac{1}{2 \pi i } \int\limits _ { C } \gamma (t) e ^ {zt} dt. $$

If additional conditions are imposed, other representations may be deduced from this formula. Thus, consider the class of entire functions $ f(z) $ of exponential type $ \leq \sigma $ for which

$$ \int\limits _ {- \infty } ^ \infty | f(x) | ^ {2} dx < \infty . $$

This class is identical with the class of functions $ f(z) $ that can be represented as

$$ f(z) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \sigma } ^ \sigma e ^ {izt} \phi (t) dt, $$

where $ \phi (t) \in {L _ {2} } ( - \sigma , \sigma ) $.

Comments

The statement at the end of the article above is called the Paley–Wiener theorem.

References

[1] E. Borel, "Leçons sur les séries divergentes" , Gauthier-Villars (1928) Zbl 54.0223.01
[2] M.M. Dzhrbashyan, "Integral transforms and representation of functions in the complex domain" , Moscow (1966) (In Russian)
[a1] R.P. Boas, "Entire functions" , Acad. Press (1954) MR0068627 Zbl 0058.30201
How to Cite This Entry:
Borel transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Borel_transform&oldid=54356
This article was adapted from an original article by A.F. Leont'ev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article