Namespaces
Variants
Actions

Borel theorem

From Encyclopedia of Mathematics
Revision as of 09:07, 1 May 2012 by Ulf Rehmann (talk | contribs) (→‎References: normalized, ZBL added)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 26E10,34E05 Secondary: 30E15 [MSN][ZBL]

A class of theorems guaranteeing existence of a smooth function with any preassigned (eventually diverging) Taylor series, including statements for complex functions defined in sectorial domains.

Real version

For any collection of real numbers $\{c_\alpha:\ \alpha\in\Z_+^n\}$ labeled by multiindices there exists a $C^\infty$-smooth function $f:(\R^n,0)\to\R$ such that $c_\alpha=\frac1{\alpha!}\partial^\alpha f(0)$. In other words, any formal series $\sum_{|\alpha|\ge 0} c_\alpha x^\alpha\in\R[[x_1,\dots,x_n]]$ is the Taylor series of a $C^\infty$-smooth function defined in an open neighborhood of the origin.

In this form the Borel theorem is a particular case of the Whitney extension theorem, see [N].

Complex version

Let $S\subset(\C,0)$ be an open sector $\{0<|z|<\rho,\ |\theta_-<\arg z <\theta_+\}$ with the opening angle $\theta_+-\theta_-$ less than $2\pi$ on the complex plane with the vertex at the origin, and $\{c_k:\ k=0,1,2,\dots\}$ a sequence of complex numbers

Then there exists a function $f$ holomorphic in $S$, for which the formal series $\sum c_k z^k$ is an asymptotic series: $$ \forall m\in\N\quad \lim_{z\to 0} \frac1{z^m}\Big(f(z)-\sum_1^m c_k z^k\Big)=0\qquad\text{as }z\to 0,\ z\in S. $$ This theorem is also referred to as the Borel-Ritt theorem, see [W, Sect. 9].

Remark

One can consider also sectors with opening larger than $2\pi$, but only on the suitable Riemann surface. A (single-valued) function defined in a punctured neighborhood of the origin and admitting an asymptotic series, is necessarily holomorphic, so its asymptotic series must converge.

Multidimensional version

The analog of Borel-Ritt theorem is valid also for formal series in several variables: any such series can be realized as an asymptotic series for a suitable function of several complex variables, holomorphic in a proper polysector $z\in\{\C^n:\ \theta_{i-}<\arg z_i<\theta_{i+},\ i=1,\dots,n,\ 0<|z|<\rho\}$, provided that $\theta_{i+}-\theta_{i-}<2\pi$. See [R].

References

[W] Wasow, W., Asymptotic expansions for ordinary differential equations, Dover Publications, Inc., New York (1987). MR0919406 Zbl 0644.34003
[N] Narasimhan, R., Analysis on real and complex manifolds, North-Holland Mathematical Library, 35. North-Holland Publishing Co., Amsterdam (1985). MR0832683 Zbl 0583.58001
[R] Ramis, J.-P., À propos du théorème de Borel-Ritt à plusieurs variables, Lecture Notes in Math., 712, Équations différentielles et systèmes de Pfaff dans le champ complexe, Sem., Inst. Rech. Math. Avancée, Strasbourg, 1975, pp. 289--292, Springer, Berlin (1979). MR0548148 Zbl 0455.35036
How to Cite This Entry:
Borel theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Borel_theorem&oldid=30977