Namespaces
Variants
Actions

Difference between revisions of "Boolean functions, normal forms of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 1: Line 1:
Formulas of a special kind realizing Boolean functions. One distinguishes between disjunctive normal forms (cf. [[Boolean functions, minimization of|Boolean functions, minimization of]]) and conjunctive normal forms. A product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169701.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169702.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169703.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169704.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169705.png" />, is called an elementary conjunction of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169706.png" /> if all its variables are different; "1" is considered to be an elementary conjunction of rank zero. A logical sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169707.png" /> is called an elementary disjunction of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169708.png" /> if all its variables are different; "0" is considered to be an elementary disjunction of rank zero.
+
Formulas of a special kind realizing Boolean functions. One distinguishes between disjunctive normal forms (cf. [[Boolean functions, minimization of|Boolean functions, minimization of]]) and conjunctive normal forms. A product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169701.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169702.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169703.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169704.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169705.png" />, is called an elementary conjunction of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169706.png" /> if all its variables are different; "1" is considered to be an elementary conjunction of rank zero. A logical sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169707.png" /> is called an elementary disjunction of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169708.png" /> if all its variables are different; "0" is considered to be an elementary disjunction of rank zero.
  
 
A formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169709.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697010.png" /> are distinct elementary conjunctions of ranks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697011.png" />, respectively, is called a disjunctive normal form, and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697012.png" /> is called its complexity; a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697014.png" /> are different elementary disjunctions of ranks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697015.png" />, respectively, is called a conjunctive normal form, and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697016.png" /> is called its complexity. Every Boolean function that does not vanish identically can be defined by a disjunctive normal form which is, generally speaking, not unique. The same applies to conjunctive normal forms and functions that do not identically vanish.
 
A formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b0169709.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697010.png" /> are distinct elementary conjunctions of ranks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697011.png" />, respectively, is called a disjunctive normal form, and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697012.png" /> is called its complexity; a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697014.png" /> are different elementary disjunctions of ranks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697015.png" />, respectively, is called a conjunctive normal form, and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697016.png" /> is called its complexity. Every Boolean function that does not vanish identically can be defined by a disjunctive normal form which is, generally speaking, not unique. The same applies to conjunctive normal forms and functions that do not identically vanish.
Line 5: Line 5:
 
From a table defining a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697017.png" /> one easily obtains the perfect disjunctive normal form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697020.png" />, and the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697021.png" /> are such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697022.png" />. The perfect disjunctive normal form realizing a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697023.png" /> is unique. The perfect conjunctive normal form is defined similarly.
 
From a table defining a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697017.png" /> one easily obtains the perfect disjunctive normal form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697020.png" />, and the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697021.png" /> are such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697022.png" />. The perfect disjunctive normal form realizing a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697023.png" /> is unique. The perfect conjunctive normal form is defined similarly.
  
Since for "almost-all" Boolean functions the number of unit sets varies between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697025.png" />, the asymptotic complexity of the perfect disjunctive normal form for "almost-all" Boolean functions is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697026.png" />. The maximal complexity of the perfect disjunctive normal forms for functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697027.png" /> variables is attained for functions that vanish at a single point. This complexity is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697028.png" />.
+
Since for "almost-all" Boolean functions the number of unit sets varies between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697025.png" />, the asymptotic complexity of the perfect disjunctive normal form for "almost-all" Boolean functions is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697026.png" />. The maximal complexity of the perfect disjunctive normal forms for functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697027.png" /> variables is attained for functions that vanish at a single point. This complexity is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697028.png" />.
  
 
The main problem in the theory of normal forms of Boolean functions is that of minimizing Boolean functions, i.e. the construction of conjunctive or disjunctive normal forms of minimal complexity — minimal conjunctive or disjunctive normal forms for any given Boolean function (cf. [[Boolean functions, minimization of|Boolean functions, minimization of]]; [[Algorithm, local|Algorithm, local]]). Here, by virtue of the duality principle, it is sufficient to consider disjunctive normal forms only. In connection with the problem of minimizing Boolean functions one also considers abridged dead-end, shortest and minimal disjunctive normal forms. An important problem in the theory of disjunctive normal forms is the search for numerical characteristics of them, and characteristics connecting various types of disjunctive normal forms of a given function.
 
The main problem in the theory of normal forms of Boolean functions is that of minimizing Boolean functions, i.e. the construction of conjunctive or disjunctive normal forms of minimal complexity — minimal conjunctive or disjunctive normal forms for any given Boolean function (cf. [[Boolean functions, minimization of|Boolean functions, minimization of]]; [[Algorithm, local|Algorithm, local]]). Here, by virtue of the duality principle, it is sufficient to consider disjunctive normal forms only. In connection with the problem of minimizing Boolean functions one also considers abridged dead-end, shortest and minimal disjunctive normal forms. An important problem in the theory of disjunctive normal forms is the search for numerical characteristics of them, and characteristics connecting various types of disjunctive normal forms of a given function.
  
The abridged disjunctive normal form is uniquely constructed from a Boolean function by means of a fairly simple algorithm. Its most important property is the fact that every minimal disjunctive normal form of a function and at least one shortest form can be obtained from the abridged disjunctive normal form by the elimination of certain elementary conjunctions. Therefore many minimization algorithms employ the abridged disjunctive normal form as the initial specification of a Boolean function. It is of major interest in this context to define the complexity of abridged disjunctive normal forms for "almost-all" functions and to determine the absolute maximum of this complexity. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697029.png" /> is the number of elementary conjunctions in the abridged disjunctive normal form of a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697030.png" /> and if
+
The abridged disjunctive normal form is uniquely constructed from a Boolean function by means of a fairly simple algorithm. Its most important property is the fact that every minimal disjunctive normal form of a function and at least one shortest form can be obtained from the abridged disjunctive normal form by the elimination of certain elementary conjunctions. Therefore many minimization algorithms employ the abridged disjunctive normal form as the initial specification of a Boolean function. It is of major interest in this context to define the complexity of abridged disjunctive normal forms for "almost-all" functions and to determine the absolute maximum of this complexity. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697029.png" /> is the number of elementary conjunctions in the abridged disjunctive normal form of a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697030.png" /> and if
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697031.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697031.png" /></td> </tr></table>
Line 17: Line 17:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697032.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697032.png" /></td> </tr></table>
  
and for "almost-all" Boolean functions
+
and for "almost-all" Boolean functions
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697033.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697033.png" /></td> </tr></table>
Line 23: Line 23:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697034.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697034.png" /></td> </tr></table>
  
It is clear from these results and from the estimates of the complexity of the perfect disjunctive normal form that the complexity of the abridged disjunctive normal form is much higher than that of the perfect disjunctive normal form, both in the "typical" and in the "record-breaking" cases. Unlike the perfect and the abridged disjunctive normal form, a given Boolean function may have many dead-end and minimal disjunctive normal forms. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697035.png" /> be the number of dead-end disjunctive normal forms and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697036.png" /> be the number of minimal disjunctive normal forms of a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697037.png" />,
+
It is clear from these results and from the estimates of the complexity of the perfect disjunctive normal form that the complexity of the abridged disjunctive normal form is much higher than that of the perfect disjunctive normal form, both in the "typical" and in the "record-breaking" cases. Unlike the perfect and the abridged disjunctive normal form, a given Boolean function may have many dead-end and minimal disjunctive normal forms. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697035.png" /> be the number of dead-end disjunctive normal forms and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697036.png" /> be the number of minimal disjunctive normal forms of a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697037.png" />,
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697038.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697038.png" /></td> </tr></table>
Line 31: Line 31:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697039.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697039.png" /></td> </tr></table>
  
and for "almost-all" Boolean functions
+
and for "almost-all" Boolean functions
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697040.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697040.png" /></td> </tr></table>
Line 39: Line 39:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697042.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697042.png" /></td> </tr></table>
  
A non-trivial upper estimate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697043.png" /> and a non-trivial estimate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697044.png" /> for "almost-all" functions are as yet (1977) not known. Complexity estimates of dead-end and of minimal disjunctive normal forms are of great interest in problems of minimization of Boolean functions. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697045.png" /> be the number of elementary conjunctions in a dead-end disjunctive normal form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697046.png" /> of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697047.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697048.png" /> be the number of elementary conjunctions in a shortest disjunctive normal form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697049.png" />,
+
A non-trivial upper estimate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697043.png" /> and a non-trivial estimate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697044.png" /> for "almost-all" functions are as yet (1977) not known. Complexity estimates of dead-end and of minimal disjunctive normal forms are of great interest in problems of minimization of Boolean functions. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697045.png" /> be the number of elementary conjunctions in a dead-end disjunctive normal form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697046.png" /> of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697047.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697048.png" /> be the number of elementary conjunctions in a shortest disjunctive normal form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697049.png" />,
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697050.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697050.png" /></td> </tr></table>
Line 47: Line 47:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697051.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697051.png" /></td> </tr></table>
  
For "almost-all" Boolean functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697052.png" /> and for almost-all dead-end disjunctive normal forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697053.png" />:
+
For "almost-all" Boolean functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697052.png" /> and for almost-all dead-end disjunctive normal forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697053.png" />:
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697054.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697054.png" /></td> </tr></table>
  
For "almost-all" Boolean functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697055.png" />:
+
For "almost-all" Boolean functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697055.png" />:
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697056.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697056.png" /></td> </tr></table>
  
These estimates show that the shortest (and also the minimal) disjunctive normal forms of "almost-all" Boolean functions account for only a small fraction of the number of dead-end disjunctive normal forms. There are also estimates of the relative complexity of dead-end and shortest disjunctive normal forms of Boolean functions. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697057.png" /> be the maximal number of elementary conjunctions in a dead-end disjunctive normal form of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697058.png" />. For "almost-all" Boolean functions
+
These estimates show that the shortest (and also the minimal) disjunctive normal forms of "almost-all" Boolean functions account for only a small fraction of the number of dead-end disjunctive normal forms. There are also estimates of the relative complexity of dead-end and shortest disjunctive normal forms of Boolean functions. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697057.png" /> be the maximal number of elementary conjunctions in a dead-end disjunctive normal form of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697058.png" />. For "almost-all" Boolean functions
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697059.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697059.png" /></td> </tr></table>
Line 63: Line 63:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697066.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697066.png" /></td> </tr></table>
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697068.png" /> are arbitrary dead-end disjunctive normal forms realizing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697069.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697070.png" /> is the number of characters in the dead-end disjunctive normal form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697071.png" />. Examples of Boolean functions with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697072.png" /> have been constructed; it has been established, however, that for "almost-all" Boolean functions
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697068.png" /> are arbitrary dead-end disjunctive normal forms realizing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697069.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697070.png" /> is the number of characters in the dead-end disjunctive normal form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697071.png" />. Examples of Boolean functions with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697072.png" /> have been constructed; it has been established, however, that for "almost-all" Boolean functions
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697073.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697073.png" /></td> </tr></table>
Line 70: Line 70:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.L. Vasil'ev,   "On comparing the complexity of typical and disjunctive normal forms" ''Problemy Kibernet.'' : 10 (1963) pp. 5–61 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.V. Glagolev,   "Certain estimates of the disjunctive normal forms of functions of the algebra of logic" ''Problemy Kibernet.'' , '''19''' (1967) pp. 75–94 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.D. Korshunov,   "The upper complexity bound of the shortest disjunctive normal forms of almost all Boolean functions" ''Cybernetics'' , '''5''' : 6 (1969) pp. 705–715 ''Kibernetika (Kiev)'' : 6 (1969) pp. 1–8</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.A. Sapozhenko,   "On the greatest length of a dead-end disjunctive normal form for almost all Boolean functions" ''Math. Notes'' , '''4''' : 6 (1968) pp. 881 ''Mat. Zametki'' , '''4''' : 6 (1968) pp. 649–658</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.L. Vasil'ev, "On comparing the complexity of typical and disjunctive normal forms" ''Problemy Kibernet.'' : 10 (1963) pp. 5–61 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.V. Glagolev, "Certain estimates of the disjunctive normal forms of functions of the algebra of logic" ''Problemy Kibernet.'' , '''19''' (1967) pp. 75–94 (In Russian) {{MR|225634}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.D. Korshunov, "The upper complexity bound of the shortest disjunctive normal forms of almost all Boolean functions" ''Cybernetics'' , '''5''' : 6 (1969) pp. 705–715 ''Kibernetika (Kiev)'' : 6 (1969) pp. 1–8</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.A. Sapozhenko, "On the greatest length of a dead-end disjunctive normal form for almost all Boolean functions" ''Math. Notes'' , '''4''' : 6 (1968) pp. 881 ''Mat. Zametki'' , '''4''' : 6 (1968) pp. 649–658 {{MR|}} {{ZBL|0177.02001}} </TD></TR></table>

Revision as of 16:55, 15 April 2012

Formulas of a special kind realizing Boolean functions. One distinguishes between disjunctive normal forms (cf. Boolean functions, minimization of) and conjunctive normal forms. A product , where if and if , is called an elementary conjunction of rank if all its variables are different; "1" is considered to be an elementary conjunction of rank zero. A logical sum is called an elementary disjunction of rank if all its variables are different; "0" is considered to be an elementary disjunction of rank zero.

A formula , where are distinct elementary conjunctions of ranks , respectively, is called a disjunctive normal form, and the number is called its complexity; a formula , where are different elementary disjunctions of ranks , respectively, is called a conjunctive normal form, and the number is called its complexity. Every Boolean function that does not vanish identically can be defined by a disjunctive normal form which is, generally speaking, not unique. The same applies to conjunctive normal forms and functions that do not identically vanish.

From a table defining a Boolean function one easily obtains the perfect disjunctive normal form , where , , and the sets are such that . The perfect disjunctive normal form realizing a Boolean function is unique. The perfect conjunctive normal form is defined similarly.

Since for "almost-all" Boolean functions the number of unit sets varies between and , the asymptotic complexity of the perfect disjunctive normal form for "almost-all" Boolean functions is . The maximal complexity of the perfect disjunctive normal forms for functions in variables is attained for functions that vanish at a single point. This complexity is .

The main problem in the theory of normal forms of Boolean functions is that of minimizing Boolean functions, i.e. the construction of conjunctive or disjunctive normal forms of minimal complexity — minimal conjunctive or disjunctive normal forms for any given Boolean function (cf. Boolean functions, minimization of; Algorithm, local). Here, by virtue of the duality principle, it is sufficient to consider disjunctive normal forms only. In connection with the problem of minimizing Boolean functions one also considers abridged dead-end, shortest and minimal disjunctive normal forms. An important problem in the theory of disjunctive normal forms is the search for numerical characteristics of them, and characteristics connecting various types of disjunctive normal forms of a given function.

The abridged disjunctive normal form is uniquely constructed from a Boolean function by means of a fairly simple algorithm. Its most important property is the fact that every minimal disjunctive normal form of a function and at least one shortest form can be obtained from the abridged disjunctive normal form by the elimination of certain elementary conjunctions. Therefore many minimization algorithms employ the abridged disjunctive normal form as the initial specification of a Boolean function. It is of major interest in this context to define the complexity of abridged disjunctive normal forms for "almost-all" functions and to determine the absolute maximum of this complexity. If is the number of elementary conjunctions in the abridged disjunctive normal form of a Boolean function and if

then the following estimates hold:

and for "almost-all" Boolean functions

It is clear from these results and from the estimates of the complexity of the perfect disjunctive normal form that the complexity of the abridged disjunctive normal form is much higher than that of the perfect disjunctive normal form, both in the "typical" and in the "record-breaking" cases. Unlike the perfect and the abridged disjunctive normal form, a given Boolean function may have many dead-end and minimal disjunctive normal forms. Let be the number of dead-end disjunctive normal forms and let be the number of minimal disjunctive normal forms of a Boolean function ,

Then the following estimates hold:

and for "almost-all" Boolean functions

A non-trivial upper estimate for and a non-trivial estimate for for "almost-all" functions are as yet (1977) not known. Complexity estimates of dead-end and of minimal disjunctive normal forms are of great interest in problems of minimization of Boolean functions. Let be the number of elementary conjunctions in a dead-end disjunctive normal form of the function ; let be the number of elementary conjunctions in a shortest disjunctive normal form of ,

The following estimates then hold:

For "almost-all" Boolean functions and for almost-all dead-end disjunctive normal forms :

For "almost-all" Boolean functions :

These estimates show that the shortest (and also the minimal) disjunctive normal forms of "almost-all" Boolean functions account for only a small fraction of the number of dead-end disjunctive normal forms. There are also estimates of the relative complexity of dead-end and shortest disjunctive normal forms of Boolean functions. Let be the maximal number of elementary conjunctions in a dead-end disjunctive normal form of a function . For "almost-all" Boolean functions

The maximum value of the ratio can be estimated from below by , as . Estimates of — the so-called scatter of — have also been obtained. Here

where and are arbitrary dead-end disjunctive normal forms realizing , and is the number of characters in the dead-end disjunctive normal form . Examples of Boolean functions with have been constructed; it has been established, however, that for "almost-all" Boolean functions

The estimates above give a fairly complete idea of the difficulties that arise when Boolean functions are minimized according to the scheme: perfect disjunctive normal form — abridged disjunctive normal form — dead-end disjunctive normal form — minimal disjunctive normal form.

References

[1] Yu.L. Vasil'ev, "On comparing the complexity of typical and disjunctive normal forms" Problemy Kibernet. : 10 (1963) pp. 5–61 (In Russian)
[2] V.V. Glagolev, "Certain estimates of the disjunctive normal forms of functions of the algebra of logic" Problemy Kibernet. , 19 (1967) pp. 75–94 (In Russian) MR225634
[3] A.D. Korshunov, "The upper complexity bound of the shortest disjunctive normal forms of almost all Boolean functions" Cybernetics , 5 : 6 (1969) pp. 705–715 Kibernetika (Kiev) : 6 (1969) pp. 1–8
[4] A.A. Sapozhenko, "On the greatest length of a dead-end disjunctive normal form for almost all Boolean functions" Math. Notes , 4 : 6 (1968) pp. 881 Mat. Zametki , 4 : 6 (1968) pp. 649–658 Zbl 0177.02001
How to Cite This Entry:
Boolean functions, normal forms of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boolean_functions,_normal_forms_of&oldid=16364
This article was adapted from an original article by Yu.I. Zhuravlev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article