Namespaces
Variants
Actions

Difference between revisions of "Bohm-Aharonov effect"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (OldImage template added)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
A phenomenon in which the topological non-triviality of a gauge field is measurable physically [[#References|[a1]]]. Moreover, this topological non-triviality, which can be expressed as a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b1106901.png" />, say, is a global topological invariant and so is not expressible by a local formula; this latter point being in contrast to a simpler topological invariant such as the dimension of the underlying space, which is deducible locally.
+
<!--
 +
b1106901.png
 +
$#A+1 = 84 n = 0
 +
$#C+1 = 84 : ~/encyclopedia/old_files/data/B110/B.1100690 Bohm\ANDAharonov effect
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
To demonstrate this effect physically, one arranges that a non-simply-connected region <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b1106902.png" /> of space has zero electromagnetic field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b1106903.png" />. This electromagnetic field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b1106904.png" /> is related to the gauge field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b1106905.png" /> by the usual relation
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b1106906.png" /></td> </tr></table>
+
A phenomenon in which the topological non-triviality of a gauge field is measurable physically [[#References|[a1]]]. Moreover, this topological non-triviality, which can be expressed as a number  $  n $,
 +
say, is a global topological invariant and so is not expressible by a local formula; this latter point being in contrast to a simpler topological invariant such as the dimension of the underlying space, which is deducible locally.
  
where the usual [[Differential form|differential form]] language has been used for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b1106907.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b1106908.png" /> so that, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b1106909.png" /> are local coordinates on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069010.png" />, one has
+
To demonstrate this effect physically, one arranges that a non-simply-connected region  $  \Omega $
 +
of space has zero electromagnetic field  $  F $.
 +
This electromagnetic field  $  F $
 +
is related to the gauge field  $  A $
 +
by the usual relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069011.png" /></td> </tr></table>
+
$$
 +
F = dA,
 +
$$
  
Given this <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069013.png" />, one can devise an experiment in which one measures a diffraction pattern associated with the parallel transport, or holonomy, of the gauge field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069014.png" /> round a non-contractible loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069016.png" /> (cf. also [[Holonomy group|Holonomy group]]). The action of parallel transport on multi-linear objects, viewed either as vectors, spinors, tensors, etc., or as sections of the appropriate bundles, is via the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069017.png" />, where
+
where the usual [[Differential form|differential form]] language has been used for  $  F $
 +
and  $  A $
 +
so that, if  $  x _  \mu  $
 +
are local coordinates on $  \Omega $,  
 +
one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069018.png" /></td> </tr></table>
+
$$
 +
F = F _ {\mu \nu }  dx  ^  \mu  \wedge dx  ^  \nu  \textrm{ and  }  A = A _  \mu  dx  ^  \mu  .
 +
$$
  
[[Differential topology|Differential topology]] provides immediately the means to see that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069019.png" /> is non-trivial. The argument goes as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069020.png" /> so that the vanishing of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069021.png" /> gives
+
Given this  $  F $
 +
and  $  \Omega $,
 +
one can devise an experiment in which one measures a diffraction pattern associated with the parallel transport, or holonomy, of the gauge field  $  A $
 +
round a non-contractible loop  $  C $
 +
in  $  \Omega $(
 +
cf. also [[Holonomy group|Holonomy group]]). The action of parallel transport on multi-linear objects, viewed either as vectors, spinors, tensors, etc., or as sections of the appropriate bundles, is via the operator  $  PT ( C ) $,
 +
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069022.png" /></td> </tr></table>
+
$$
 +
PT ( C ) = { \mathop{\rm exp} } \left [ \int\limits _ { C } A \right ] .
 +
$$
  
Hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069023.png" /> determines a [[De Rham cohomology|de Rham cohomology]] class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069024.png" /> and one has
+
[[Differential topology|Differential topology]] provides immediately the means to see that  $  PT ( C ) $
 +
is non-trivial. The argument goes as follows:  $  F = dA $
 +
so that the vanishing of  $  F $
 +
gives
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069025.png" /></td> </tr></table>
+
$$
 +
dA = 0 \Rightarrow  ( A = df  \textrm{ locally  } ) .
 +
$$
  
It is clear from Stokes' theorem (cf. [[Stokes theorem|Stokes theorem]]) that the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069026.png" /> only depends on the homotopy class of the loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069027.png" />. In addition, the loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069028.png" /> determines a homology class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069029.png" />, where
+
Hence  $  A $
 +
determines a [[De Rham cohomology|de Rham cohomology]] class $  [ A ] $
 +
and one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069030.png" /></td> </tr></table>
+
$$
 +
[ A ] \in H  ^ {1} ( \Omega; \mathbf R ) .
 +
$$
  
This means that the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069031.png" /> (which can be taken equal to the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069032.png" />) is just the dual pairing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069033.png" /> between cohomology and homology, i.e.
+
It is clear from Stokes' theorem (cf. [[Stokes theorem|Stokes theorem]]) that the integral $  \int _ {C} A $
 +
only depends on the homotopy class of the loop  $  C $.  
 +
In addition, the loop  $  C $
 +
determines a homology class  $  [ C ] $,  
 +
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069034.png" /></td> </tr></table>
+
$$
 +
[ C ] \in H _ {1} ( \Omega; \mathbf R ) .
 +
$$
  
An experiment to test this for the electromagnetic field was done in [[#References|[a2]]]. The experimental setup is of the Young's slits type, where electrons replace photons and with the addition of a very thin solenoid. The electrons pass through the slits and on either side of the solenoid an interference pattern is then detected. The interference pattern is first measured with the solenoid off. This pattern is then found to change when the solenoid is switched on, even though the electrons always pass through a region where the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069035.png" /> is zero.
+
This means that the integral  $  \int _ {C} A $(
 +
which can be taken equal to the number  $  n $)
 +
is just the dual pairing  $  ( \bullet, \bullet ) $
 +
between cohomology and homology, i.e.
  
Mathematically speaking one realizes the solenoid by a cylinder <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069036.png" /> so that
+
$$
 +
( [ A ] , [ C ] ) = \int\limits _ { C } A .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069037.png" /></td> </tr></table>
+
An experiment to test this for the electromagnetic field was done in [[#References|[a2]]]. The experimental setup is of the Young's slits type, where electrons replace photons and with the addition of a very thin solenoid. The electrons pass through the slits and on either side of the solenoid an interference pattern is then detected. The interference pattern is first measured with the solenoid off. This pattern is then found to change when the solenoid is switched on, even though the electrons always pass through a region where the field  $  F $
 +
is zero.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069038.png" /></td> </tr></table>
+
Mathematically speaking one realizes the solenoid by a cylinder  $  L $
 +
so that
  
The loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069039.png" /> is the union of the electron paths <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069041.png" />.
+
$$
 +
\Omega = \mathbf R  ^ {3} - L  \Rightarrow
 +
$$
 +
 
 +
$$
 +
\Rightarrow
 +
H  ^ {1} ( \Omega; \mathbf R ) = H  ^ {1} ( \mathbf R  ^ {3} - L; \mathbf R ) = \mathbf Z.
 +
$$
 +
 
 +
The loop  $  C $
 +
is the union of the electron paths $  P _ {1} $
 +
and $  P _ {2} $.
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/b110690a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/b110690a.gif" />
Line 45: Line 107:
 
A schematic Bohm–Aharonov experiment
 
A schematic Bohm–Aharonov experiment
  
The Bohm–Aharonov effect shows that the gauge potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069042.png" /> is a more basic object than the electromagnetic field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069043.png" />.
+
The Bohm–Aharonov effect shows that the gauge potential $  A $
 +
is a more basic object than the electromagnetic field $  F $.
  
Geometrically speaking, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069044.png" /> is a connection and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069045.png" /> is a curvature. Hence, in purely geometrical language one can describe the situation by saying that a flat connection (i.e. one for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069046.png" />, cf. [[Parallel displacement(2)|Parallel displacement]]) need not be trivial if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069047.png" /> is not simply connected, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069048.png" />. This non-triviality of flat connections when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069049.png" /> extends to the non-Abelian or Yang–Mills case.
+
Geometrically speaking, $  A $
 +
is a connection and $  F $
 +
is a curvature. Hence, in purely geometrical language one can describe the situation by saying that a flat connection (i.e. one for which $  F = 0 $,  
 +
cf. [[Parallel displacement(2)|Parallel displacement]]) need not be trivial if $  \Omega $
 +
is not simply connected, i.e. if $  \pi _ {1} ( \Omega ) \neq 0 $.  
 +
This non-triviality of flat connections when $  \pi _ {1} ( \Omega ) \neq 0 $
 +
extends to the non-Abelian or Yang–Mills case.
  
For a Yang–Mills <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069050.png" />-connection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069051.png" /> (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069052.png" /> non-Abelian), the curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069053.png" /> is given by
+
For a Yang–Mills $  G $-
 +
connection $  A $(
 +
with $  G $
 +
non-Abelian), the curvature $  F $
 +
is given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069054.png" /></td> </tr></table>
+
$$
 +
F = dA + A \wedge A .
 +
$$
  
Further, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069055.png" /> is defined on a bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069056.png" /> over a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069057.png" /> and if it is assumed that, as in the Abelian case,
+
Further, if $  A $
 +
is defined on a bundle $  P $
 +
over a manifold $  \Omega $
 +
and if it is assumed that, as in the Abelian case,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069058.png" /></td> </tr></table>
+
$$
 +
F = 0 \textrm{ and  }  \pi _ {1} ( \Omega ) \neq 0,
 +
$$
  
then the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069059.png" /> only depends on the homotopy class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069060.png" />, which is also denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069061.png" /> (the context should prevent any confusion with homology classes). Adding to this the fact that the parallel transport operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069062.png" /> has the property that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069063.png" />, one can use <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069064.png" /> to define the following linear mapping:
+
then the integral $  \int _ {C} A $
 +
only depends on the homotopy class of $  C $,  
 +
which is also denoted by $  [ C ] $(
 +
the context should prevent any confusion with homology classes). Adding to this the fact that the parallel transport operator $  PT ( C ) = { \mathop{\rm exp} } [ \int _ {C} A ] $
 +
has the property that $  PT ( C ) \in G $,  
 +
one can use $  A $
 +
to define the following linear mapping:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069065.png" /></td> </tr></table>
+
$$
 +
{M _ {A} } : {\pi _ {1} ( \Omega ) } \rightarrow G ,  [ C ] \mapsto PT ( C ) .
 +
$$
  
One can check that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069066.png" /> so that, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069067.png" /> varies, the flat <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069068.png" />-connection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069069.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069070.png" /> gives a representation of the [[Fundamental group|fundamental group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069071.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069072.png" />; it is easy to verify that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069073.png" /> under a gauge transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069074.png" />, then this <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069075.png" /> acts on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069076.png" /> via the adjoint action <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069077.png" />. In other words, it acts by conjugation, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069078.png" />. But this means that the representations defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069079.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069080.png" /> are equivalent, thus the gauge equivalence class of flat connections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069081.png" /> is characterized by an element of the quotient
+
One can check that $  M _ {A} \in { \mathop{\rm Hom} } ( \pi _ {1} ( \Omega ) ,G ) $
 +
so that, as $  [ C ] $
 +
varies, the flat $  G $-
 +
connection $  A $
 +
on $  \Omega $
 +
gives a representation of the [[Fundamental group|fundamental group]] $  \pi _ {1} ( \Omega ) $
 +
in $  G $;  
 +
it is easy to verify that if $  A \mapsto A _ {g} = g ^ {- 1 } Ag + g ^ {- 1 } dg $
 +
under a gauge transformation $  g \in G $,  
 +
then this $  g $
 +
acts on $  PT ( C ) $
 +
via the adjoint action $  { \mathop{\rm Ad} } ( G ) $.  
 +
In other words, it acts by conjugation, i.e., $  PT ( C ) \mapsto g ^ {- 1 } PT ( C ) g $.  
 +
But this means that the representations defined by $  M _ {A} $
 +
and $  M _ {A _ {g}  } $
 +
are equivalent, thus the gauge equivalence class of flat connections $  [ A ] $
 +
is characterized by an element of the quotient
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069082.png" /></td> </tr></table>
+
$$
 +
{ \mathop{\rm Hom} } ( \pi _ {1} ( \Omega ) ,G ) / { \mathop{\rm Ad} } ( G ) .
 +
$$
  
 
Hence the moduli space of gauge-inequivalent flat connections is the space
 
Hence the moduli space of gauge-inequivalent flat connections is the space
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069083.png" /></td> </tr></table>
+
$$
 +
{ \mathop{\rm Hom} } ( \pi _ {1} ( \Omega ) ,G ) / { \mathop{\rm Ad} } ( G ) .
 +
$$
  
The holonomy group element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110690/b11069084.png" /> is also of central interest elsewhere. It occurs in the study of the adiabatic periodic change of parameters of a quantum system described in [[Quantum field theory|quantum field theory]], [[#References|[a3]]], [[#References|[a4]]], where it is called a Wilson line or Wilson loop, and in mathematics. One of the most important of these concerns the quantum field theory formulation of knot invariants [[#References|[a5]]], such as the Jones polynomial [[#References|[a6]]]. Flat connections also play a distinguished part in this theory.
+
The holonomy group element $  PT ( C ) $
 +
is also of central interest elsewhere. It occurs in the study of the adiabatic periodic change of parameters of a quantum system described in [[Quantum field theory|quantum field theory]], [[#References|[a3]]], [[#References|[a4]]], where it is called a Wilson line or Wilson loop, and in mathematics. One of the most important of these concerns the quantum field theory formulation of knot invariants [[#References|[a5]]], such as the Jones polynomial [[#References|[a6]]]. Flat connections also play a distinguished part in this theory.
  
 
See also [[Quantum field theory|Quantum field theory]]; [[Knot theory|Knot theory]].
 
See also [[Quantum field theory|Quantum field theory]]; [[Knot theory|Knot theory]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  Y. Aharonov,  D. Bohm,  "Significance of electromagnetic potentials in quantum theory"  ''Phys. Rev.'' , '''115'''  (1959)  pp. 485–491</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D.R. Brill,  F.G. Werner,  "Significance of electromagnetic potentials in the quantum theory in the interpretation of electron fringe interferometer observations"  ''Phys. Rev. Lett.'' , '''4'''  (1960)  pp. 344–347</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M.V. Berry,  "Quantal phase factors accompanying adiabatic changes"  ''Proc. Roy. Soc. London A'' , '''392'''  (1984)  pp. 45–57</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B. Simon,  "Holonomy, the quantum adiabatic theorem and Berry's phase"  ''Phys. Rev. Lett.'' , '''51'''  (1983)  pp. 2167–2170</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  E. Witten,  "Topological quantum field theory"  ''Comm. Math. Phys.'' , '''117'''  (1988)  pp. 353–386</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  V.F.R. Jones,  "A polynomial invariant for knots via von Neumann algebras"  ''Bull. Amer. Math. Soc.'' , '''12'''  (1985)  pp. 103–111</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  Y. Aharonov,  D. Bohm,  "Significance of electromagnetic potentials in quantum theory"  ''Phys. Rev.'' , '''115'''  (1959)  pp. 485–491</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D.R. Brill,  F.G. Werner,  "Significance of electromagnetic potentials in the quantum theory in the interpretation of electron fringe interferometer observations"  ''Phys. Rev. Lett.'' , '''4'''  (1960)  pp. 344–347</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M.V. Berry,  "Quantal phase factors accompanying adiabatic changes"  ''Proc. Roy. Soc. London A'' , '''392'''  (1984)  pp. 45–57</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B. Simon,  "Holonomy, the quantum adiabatic theorem and Berry's phase"  ''Phys. Rev. Lett.'' , '''51'''  (1983)  pp. 2167–2170</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top">  E. Witten,  "Topological quantum field theory"  ''Comm. Math. Phys.'' , '''117'''  (1988)  pp. 353–386</TD></TR>
 +
<TR><TD valign="top">[a6]</TD> <TD valign="top">  V.F.R. Jones,  "A polynomial invariant for knots via von Neumann algebras"  ''Bull. Amer. Math. Soc.'' , '''12'''  (1985)  pp. 103–111</TD></TR>
 +
</table>
 +
 
 +
{{OldImage}}

Latest revision as of 08:30, 26 March 2023


A phenomenon in which the topological non-triviality of a gauge field is measurable physically [a1]. Moreover, this topological non-triviality, which can be expressed as a number $ n $, say, is a global topological invariant and so is not expressible by a local formula; this latter point being in contrast to a simpler topological invariant such as the dimension of the underlying space, which is deducible locally.

To demonstrate this effect physically, one arranges that a non-simply-connected region $ \Omega $ of space has zero electromagnetic field $ F $. This electromagnetic field $ F $ is related to the gauge field $ A $ by the usual relation

$$ F = dA, $$

where the usual differential form language has been used for $ F $ and $ A $ so that, if $ x _ \mu $ are local coordinates on $ \Omega $, one has

$$ F = F _ {\mu \nu } dx ^ \mu \wedge dx ^ \nu \textrm{ and } A = A _ \mu dx ^ \mu . $$

Given this $ F $ and $ \Omega $, one can devise an experiment in which one measures a diffraction pattern associated with the parallel transport, or holonomy, of the gauge field $ A $ round a non-contractible loop $ C $ in $ \Omega $( cf. also Holonomy group). The action of parallel transport on multi-linear objects, viewed either as vectors, spinors, tensors, etc., or as sections of the appropriate bundles, is via the operator $ PT ( C ) $, where

$$ PT ( C ) = { \mathop{\rm exp} } \left [ \int\limits _ { C } A \right ] . $$

Differential topology provides immediately the means to see that $ PT ( C ) $ is non-trivial. The argument goes as follows: $ F = dA $ so that the vanishing of $ F $ gives

$$ dA = 0 \Rightarrow ( A = df \textrm{ locally } ) . $$

Hence $ A $ determines a de Rham cohomology class $ [ A ] $ and one has

$$ [ A ] \in H ^ {1} ( \Omega; \mathbf R ) . $$

It is clear from Stokes' theorem (cf. Stokes theorem) that the integral $ \int _ {C} A $ only depends on the homotopy class of the loop $ C $. In addition, the loop $ C $ determines a homology class $ [ C ] $, where

$$ [ C ] \in H _ {1} ( \Omega; \mathbf R ) . $$

This means that the integral $ \int _ {C} A $( which can be taken equal to the number $ n $) is just the dual pairing $ ( \bullet, \bullet ) $ between cohomology and homology, i.e.

$$ ( [ A ] , [ C ] ) = \int\limits _ { C } A . $$

An experiment to test this for the electromagnetic field was done in [a2]. The experimental setup is of the Young's slits type, where electrons replace photons and with the addition of a very thin solenoid. The electrons pass through the slits and on either side of the solenoid an interference pattern is then detected. The interference pattern is first measured with the solenoid off. This pattern is then found to change when the solenoid is switched on, even though the electrons always pass through a region where the field $ F $ is zero.

Mathematically speaking one realizes the solenoid by a cylinder $ L $ so that

$$ \Omega = \mathbf R ^ {3} - L \Rightarrow $$

$$ \Rightarrow H ^ {1} ( \Omega; \mathbf R ) = H ^ {1} ( \mathbf R ^ {3} - L; \mathbf R ) = \mathbf Z. $$

The loop $ C $ is the union of the electron paths $ P _ {1} $ and $ P _ {2} $.

Figure: b110690a

A schematic Bohm–Aharonov experiment

The Bohm–Aharonov effect shows that the gauge potential $ A $ is a more basic object than the electromagnetic field $ F $.

Geometrically speaking, $ A $ is a connection and $ F $ is a curvature. Hence, in purely geometrical language one can describe the situation by saying that a flat connection (i.e. one for which $ F = 0 $, cf. Parallel displacement) need not be trivial if $ \Omega $ is not simply connected, i.e. if $ \pi _ {1} ( \Omega ) \neq 0 $. This non-triviality of flat connections when $ \pi _ {1} ( \Omega ) \neq 0 $ extends to the non-Abelian or Yang–Mills case.

For a Yang–Mills $ G $- connection $ A $( with $ G $ non-Abelian), the curvature $ F $ is given by

$$ F = dA + A \wedge A . $$

Further, if $ A $ is defined on a bundle $ P $ over a manifold $ \Omega $ and if it is assumed that, as in the Abelian case,

$$ F = 0 \textrm{ and } \pi _ {1} ( \Omega ) \neq 0, $$

then the integral $ \int _ {C} A $ only depends on the homotopy class of $ C $, which is also denoted by $ [ C ] $( the context should prevent any confusion with homology classes). Adding to this the fact that the parallel transport operator $ PT ( C ) = { \mathop{\rm exp} } [ \int _ {C} A ] $ has the property that $ PT ( C ) \in G $, one can use $ A $ to define the following linear mapping:

$$ {M _ {A} } : {\pi _ {1} ( \Omega ) } \rightarrow G , [ C ] \mapsto PT ( C ) . $$

One can check that $ M _ {A} \in { \mathop{\rm Hom} } ( \pi _ {1} ( \Omega ) ,G ) $ so that, as $ [ C ] $ varies, the flat $ G $- connection $ A $ on $ \Omega $ gives a representation of the fundamental group $ \pi _ {1} ( \Omega ) $ in $ G $; it is easy to verify that if $ A \mapsto A _ {g} = g ^ {- 1 } Ag + g ^ {- 1 } dg $ under a gauge transformation $ g \in G $, then this $ g $ acts on $ PT ( C ) $ via the adjoint action $ { \mathop{\rm Ad} } ( G ) $. In other words, it acts by conjugation, i.e., $ PT ( C ) \mapsto g ^ {- 1 } PT ( C ) g $. But this means that the representations defined by $ M _ {A} $ and $ M _ {A _ {g} } $ are equivalent, thus the gauge equivalence class of flat connections $ [ A ] $ is characterized by an element of the quotient

$$ { \mathop{\rm Hom} } ( \pi _ {1} ( \Omega ) ,G ) / { \mathop{\rm Ad} } ( G ) . $$

Hence the moduli space of gauge-inequivalent flat connections is the space

$$ { \mathop{\rm Hom} } ( \pi _ {1} ( \Omega ) ,G ) / { \mathop{\rm Ad} } ( G ) . $$

The holonomy group element $ PT ( C ) $ is also of central interest elsewhere. It occurs in the study of the adiabatic periodic change of parameters of a quantum system described in quantum field theory, [a3], [a4], where it is called a Wilson line or Wilson loop, and in mathematics. One of the most important of these concerns the quantum field theory formulation of knot invariants [a5], such as the Jones polynomial [a6]. Flat connections also play a distinguished part in this theory.

See also Quantum field theory; Knot theory.

References

[a1] Y. Aharonov, D. Bohm, "Significance of electromagnetic potentials in quantum theory" Phys. Rev. , 115 (1959) pp. 485–491
[a2] D.R. Brill, F.G. Werner, "Significance of electromagnetic potentials in the quantum theory in the interpretation of electron fringe interferometer observations" Phys. Rev. Lett. , 4 (1960) pp. 344–347
[a3] M.V. Berry, "Quantal phase factors accompanying adiabatic changes" Proc. Roy. Soc. London A , 392 (1984) pp. 45–57
[a4] B. Simon, "Holonomy, the quantum adiabatic theorem and Berry's phase" Phys. Rev. Lett. , 51 (1983) pp. 2167–2170
[a5] E. Witten, "Topological quantum field theory" Comm. Math. Phys. , 117 (1988) pp. 353–386
[a6] V.F.R. Jones, "A polynomial invariant for knots via von Neumann algebras" Bull. Amer. Math. Soc. , 12 (1985) pp. 103–111


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Bohm-Aharonov effect. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bohm-Aharonov_effect&oldid=11820
This article was adapted from an original article by C. Nash (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article