Namespaces
Variants
Actions

Difference between revisions of "Bochner integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX-ed article.)
Line 1: Line 1:
An integral of a function with values in a Banach space with respect to a scalar measure. It belongs to the so-called strong integrals (cf. [[Strong integral|Strong integral]]).
+
An integral of a function with values in a Banach space with respect to a scalar-valued measure. It belongs to the family of so-called ''strong integrals'' (cf. [[Strong integral|Strong integral]]).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167101.png" /> be the vector space of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167103.png" />, with values in a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167104.png" />, given on a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167105.png" /> with a countably-additive scalar measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167106.png" /> on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167107.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167108.png" /> of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b0167109.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671010.png" /> is called simple if
+
Let $ F(X;E,\mathfrak{B},\mu) $ denote the vector space of functions $ x: E \to X $, where $ X $ is a Banach space and $ (E,\mathfrak{B},\mu) $ is a measure space, with $ \mu $ being a countably-additive scalar-valued measure on a $ \sigma $-algebra $ \mathfrak{B} $ of subsets of $ E $. A function $ x_{0} \in F $ is called ''simple'' if and only if for some $ n \in \mathbb{N} $, there exist distinct points $ x_{1},\ldots,x_{n} \in X $ and measurable subsets $ B_{1},\ldots,B_{n} \in \mathfrak{B} $, satisfying $ \mu(B_{i}) < \infty $ for all $ i \in \{ 1,\ldots,n \} $ as well as $ B_{i} \cap B_{j} = \varnothing $ for all distinct $ i,j \in \{ 1,\ldots,n \} $, such that
 +
$$
 +
\forall t \in E: \quad
 +
{x_{0}}(t) =
 +
\begin{cases}
 +
x_{i} & \text{if $ t \in B_{i} $ for some $ i \in \{ 1,\ldots,n \} $}; \\
 +
0 & \text{if $ \displaystyle t \in E \Bigg\backslash \bigcup_{i = 1}^{n} B_{i} $}.
 +
\end{cases}
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671011.png" /></td> </tr></table>
+
A function $ x \in F $ is called ''strongly measurable'' if and only if there exists a sequence $ (x_{n})_{n \in \mathbb{N}} $ of simple functions such that $ \displaystyle \lim_{n \to \infty} \| {x_{n}}(\bullet) - x(\bullet) \|_{X} = 0 $ pointwise almost-everywhere on $ E $ with respect to $ \mu $. In this case, the scalar-valued function $ \| x(\bullet) \|_{X}: E \to [0,\infty) $ is $ \mathfrak{B} $-measurable. For the simple function $ x_{0} $, define its Bochner-integral by
 +
$$
 +
\int_{E} {x_{0}}(t) ~ \mathrm{d}{\mu(t)} \stackrel{\text{df}}{=} \sum_{i = 1}^{n} \mu(B_{i}) \cdot x_{i}.
 +
$$
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671012.png" /> is called strongly measurable if there exists a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671013.png" /> of simple functions with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671014.png" /> almost-everywhere with respect to the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671015.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671016.png" />. In such a case the scalar function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671017.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671018.png" />-measurable. For the simple function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671019.png" />
+
A function $ x \in F $ is called ''Bochner-integrable'' if and only if it is strongly measurable and for some approximating sequence $ (x_{n})_{n \in \mathbb{N}} $ of simple functions, we have
 +
$$
 +
\lim_{n \to \infty} \int_{E} \| x(t) - {x_{n}}(t) \|_{X} ~ \mathrm{d}{\mu(t)} = 0.
 +
$$
 +
The Bochner-integral of such a function over a measurable subset $ B \in \mathfrak{B} $ is then defined by
 +
$$
 +
\int_{B} x(t) ~ \mathrm{d}{\mu(t)} \stackrel{\text{df}}{=} \lim_{n \to \infty} \int_{E} {\chi_{B}}(t) \cdot {x_{n}}(t) ~ \mathrm{d}{\mu(t)},
 +
$$
 +
where $ \chi_{B} $ denotes the characteristic function of $ B $, and the limit is understood in the sense of strong convergence in $ X $. This limit exists and is independent of the choice of an approximating sequence of simple functions.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671020.png" /></td> </tr></table>
+
'''Criterion for Bochner-integrability:''' For a strongly-measurable function $ x \in F $ to be Bochner-integrable, it is necessary and sufficient for its pointwise-norm to be integrable, i.e.,
 +
$$
 +
\int_{E} \| x(t) \|_{X} ~ \mathrm{d}{\mu(t)} < \infty.
 +
$$
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671021.png" /> is said to be Bochner integrable if it is strongly measurable and if for some approximating sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671022.png" /> of simple functions
+
The set of Bochner-integrable functions forms a vector subspace $ \mathcal{L} $ of $ F $, and the Bochner-integral is a linear operator on this subspace.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671023.png" /></td> </tr></table>
+
'''Properties of Bochner-integrals:'''
  
The Bochner integral of such a function over a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671024.png" /> is
+
1) $ \displaystyle \left\| \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right\|_{X} \leq \int_{B} \| x(t) \|_{X} ~ \mathrm{d}{\mu(t)} $ for every $ B \in \mathfrak{B} $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671025.png" /></td> </tr></table>
+
2) A Bochner integral is a countably-additive $ \mu $-absolutely continuous set-function on the $ \sigma $-algebra $ \mathfrak{B} $<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671036.png" />, i.e.,
 +
$$
 +
\int_{\bigcup_{i = 1}^{\infty} B_{i}} x(t) ~ \mathrm{d}{\mu(t)} = \sum_{i = 1}^{\infty} \int_{B_{i}} x(t) ~ \mathrm{d}{\mu(t)},
 +
$$
 +
if $ B_{i} \in \mathfrak{B} $ and $ \mu(B_{i}) < \infty $ for all $ i \in \{ 1,\ldots,n \} $, $ B_{i} \cap B_{j} = \varnothing $ for all distinct $ i,j \in \{ 1,\ldots,n \} $, and $ \displaystyle \left\| \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right\|_{X} \to 0 $ if $ \mu(B) \to 0 $, uniformly for $ B \in \mathfrak{B} $.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671026.png" /> is the characteristic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671027.png" />, and the limit is understood in the sense of strong convergence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671028.png" />. This limit exists, and is independent of the choice of the approximation sequence of simple functions.
+
3) If $ (x_{n})_{n \in \mathbb{N}} $ is a sequence in $ F $ and $ \displaystyle \lim_{n \to \infty} x_{n} = x $ pointwise almost-everywhere on $ B \in \mathfrak{B} $ with respect to $ \mu $, if $ \| {x_{n}}(\bullet) \|_{X} \leq f $ pointwise almost-everywhere on $ B $ with respect to $ \mu $, and if $ \displaystyle \int_{B} f ~ \mathrm{d}{\mu} < \infty $, then
 +
$$
 +
x \in \mathcal{L} \qquad \text{and} \qquad
 +
\lim_{n \to \infty} \int_{B} {x_{n}}(t) ~ \mathrm{d}{\mu(t)} = \int_{B} x(t) ~ \mathrm{d}{\mu(t)}.
 +
$$
  
Criterion for Bochner integrability: For a strongly-measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671029.png" /> to be Bochner integrable it is necessary and sufficient for the norm of this function to be integrable, i.e.
+
4) The space $ \mathcal{L} $ is complete with respect to the norm (cf. [[Convergence in norm|Convergence in norm]])
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671030.png" /></td> </tr></table>
+
\| x - y \|_{\mathcal{L}} \stackrel{\text{df}}{=} \int_{E} \| x(t) - y(t) \|_{X} ~ \mathrm{d}{\mu(t)}.
 
+
$$
The set of Bochner-integrable functions forms a vector subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671032.png" />, and the Bochner integral is a linear operator on this subspace.
 
 
 
Properties of Bochner integrals:
 
 
 
1)
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671033.png" /></td> </tr></table>
 
 
 
2) A Bochner integral is a countably-additive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671034.png" />-absolutely continuous set-function on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671035.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671036.png" />, i.e.
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671037.png" /></td> </tr></table>
 
 
 
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671038.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671039.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671040.png" />, uniformly for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671041.png" />.
 
 
 
3) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671042.png" /> almost-everywhere with respect to the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671043.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671044.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671045.png" /> almost-everywhere with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671046.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671047.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671048.png" />, then
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671049.png" /></td> </tr></table>
 
 
 
and
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671050.png" /></td> </tr></table>
 
 
 
4) The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671051.png" /> is complete with respect to the norm (cf. [[Convergence in norm|Convergence in norm]])
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671052.png" /></td> </tr></table>
 
 
 
5) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671053.png" /> is a closed linear operator from a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671054.png" /> into a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671055.png" /> and if
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671056.png" /></td> </tr></table>
 
  
 +
5) If $ T $ is a closed linear operator from a Banach space $ X $ to another $ Y $, and if
 +
$$
 +
x \in \mathcal{L}(X;E,\mathfrak{B},\mu) \qquad \text{and} \qquad
 +
T \circ x \in \mathcal{L}(Y;E,\mathfrak{B},\mu),
 +
$$
 
then
 
then
 +
$$
 +
\forall B \in \mathfrak{B}: \quad
 +
\int_{B} T(x(t)) ~ \mathrm{d}{\mu(t)} = T \! \left( \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right).
 +
$$
 +
If $ T $ is bounded, then the condition
 +
$$
 +
T \circ x \in \mathcal{L}(Y;E,\mathfrak{B},\mu)
 +
$$
 +
is automatically fulfilled ([[#References|[3]]]–[[#References|[5]]]).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671057.png" /></td> </tr></table>
+
The Bochner integral was introduced by S. Bochner [[#References|[1]]]. Equivalent definitions were given by T. Hildebrandt [[#References|[2]]] and N. Dunford (the $ D_{0} $-integral).
 
 
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671058.png" /> is bounded, the condition
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671059.png" /></td> </tr></table>
 
 
 
is automatically fulfilled, [[#References|[3]]]–[[#References|[5]]].
 
 
 
The Bochner integral was introduced by S. Bochner [[#References|[1]]]. Equivalent definitions were given by T. Hildebrandt [[#References|[2]]] and N. Dunford (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016710/b01671060.png" />-integral).
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Bochner,  "Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind"  ''Fund. Math.'' , '''20'''  (1933)  pp. 262–276</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  T.H. Hildebrandt,  "Integration in abstract spaces"  ''Bull. Amer. Math. Soc.'' , '''59'''  (1953)  pp. 111–139</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  K. Yosida,  "Functional analysis" , Springer  (1980)  pp. Chapt. 8, §1</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E. Hille,  R.S. Phillips,  "Functional analysis and semi-groups" , Amer. Math. Soc.  (1957)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators. General theory" , '''1''' , Interscience  (1958)</TD></TR></table>
 
 
  
 +
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top"> S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind” ''Fund. Math.'', '''20''' (1933), pp. 262–276.</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top"> T.H. Hildebrandt, “Integration in abstract spaces” ''Bull. Amer. Math. Soc.'', '''59''' (1953), pp. 111–139.</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top"> K. Yosida, “Functional analysis”, Springer (1980), Ch. 8, §1.</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top"> E. Hille, R.S. Phillips, “Functional analysis and semi-groups”, Amer. Math. Soc. (1957).</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, “Linear operators. General theory”, '''1''', Interscience (1958).</TD></TR>
 +
</table>
  
 
====Comments====
 
====Comments====
A simple function is also called a step function. A good recent textbook on integrals with values in a Banach space is [[#References|[a1]]]; [[#References|[a4]]] is specifically about the Bochner integral.
+
A simple function is also called a step function. A good recent textbook on integrals with values in a Banach space is [[#References|[a1]]]; [[#References|[a4]]] is specifically about the Bochner-integral.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Diestel,   J.J. Uhl jr.,   "Vector measures" , ''Math. Surveys'' , '''15''' , Amer. Math. Soc. (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen,   "Integration" , North-Holland (1967)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Bourbaki,   "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Mikusiński,   "The Bochner integral" , Acad. Press (1978)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Diestel, J.J. Uhl, Jr., “Vector measures”, ''Math. Surveys'', '''15''', Amer. Math. Soc. (1977).</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, “Integration”, North-Holland (1967).</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Bourbaki, “Elements of mathematics. Integration”, Addison-Wesley (1975), Ch. 6, 7, 8 (translated from French).</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Mikusiński, “The Bochner integral”, Acad. Press (1978).</TD></TR>
 +
</table>

Revision as of 07:48, 26 April 2016

An integral of a function with values in a Banach space with respect to a scalar-valued measure. It belongs to the family of so-called strong integrals (cf. Strong integral).

Let $ F(X;E,\mathfrak{B},\mu) $ denote the vector space of functions $ x: E \to X $, where $ X $ is a Banach space and $ (E,\mathfrak{B},\mu) $ is a measure space, with $ \mu $ being a countably-additive scalar-valued measure on a $ \sigma $-algebra $ \mathfrak{B} $ of subsets of $ E $. A function $ x_{0} \in F $ is called simple if and only if for some $ n \in \mathbb{N} $, there exist distinct points $ x_{1},\ldots,x_{n} \in X $ and measurable subsets $ B_{1},\ldots,B_{n} \in \mathfrak{B} $, satisfying $ \mu(B_{i}) < \infty $ for all $ i \in \{ 1,\ldots,n \} $ as well as $ B_{i} \cap B_{j} = \varnothing $ for all distinct $ i,j \in \{ 1,\ldots,n \} $, such that $$ \forall t \in E: \quad {x_{0}}(t) = \begin{cases} x_{i} & \text{if $ t \in B_{i} $ for some $ i \in \{ 1,\ldots,n \} $}; \\ 0 & \text{if $ \displaystyle t \in E \Bigg\backslash \bigcup_{i = 1}^{n} B_{i} $}. \end{cases} $$

A function $ x \in F $ is called strongly measurable if and only if there exists a sequence $ (x_{n})_{n \in \mathbb{N}} $ of simple functions such that $ \displaystyle \lim_{n \to \infty} \| {x_{n}}(\bullet) - x(\bullet) \|_{X} = 0 $ pointwise almost-everywhere on $ E $ with respect to $ \mu $. In this case, the scalar-valued function $ \| x(\bullet) \|_{X}: E \to [0,\infty) $ is $ \mathfrak{B} $-measurable. For the simple function $ x_{0} $, define its Bochner-integral by $$ \int_{E} {x_{0}}(t) ~ \mathrm{d}{\mu(t)} \stackrel{\text{df}}{=} \sum_{i = 1}^{n} \mu(B_{i}) \cdot x_{i}. $$

A function $ x \in F $ is called Bochner-integrable if and only if it is strongly measurable and for some approximating sequence $ (x_{n})_{n \in \mathbb{N}} $ of simple functions, we have $$ \lim_{n \to \infty} \int_{E} \| x(t) - {x_{n}}(t) \|_{X} ~ \mathrm{d}{\mu(t)} = 0. $$ The Bochner-integral of such a function over a measurable subset $ B \in \mathfrak{B} $ is then defined by $$ \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \stackrel{\text{df}}{=} \lim_{n \to \infty} \int_{E} {\chi_{B}}(t) \cdot {x_{n}}(t) ~ \mathrm{d}{\mu(t)}, $$ where $ \chi_{B} $ denotes the characteristic function of $ B $, and the limit is understood in the sense of strong convergence in $ X $. This limit exists and is independent of the choice of an approximating sequence of simple functions.

Criterion for Bochner-integrability: For a strongly-measurable function $ x \in F $ to be Bochner-integrable, it is necessary and sufficient for its pointwise-norm to be integrable, i.e., $$ \int_{E} \| x(t) \|_{X} ~ \mathrm{d}{\mu(t)} < \infty. $$

The set of Bochner-integrable functions forms a vector subspace $ \mathcal{L} $ of $ F $, and the Bochner-integral is a linear operator on this subspace.

Properties of Bochner-integrals:

1) $ \displaystyle \left\| \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right\|_{X} \leq \int_{B} \| x(t) \|_{X} ~ \mathrm{d}{\mu(t)} $ for every $ B \in \mathfrak{B} $.

2) A Bochner integral is a countably-additive $ \mu $-absolutely continuous set-function on the $ \sigma $-algebra $ \mathfrak{B} $, i.e., $$ \int_{\bigcup_{i = 1}^{\infty} B_{i}} x(t) ~ \mathrm{d}{\mu(t)} = \sum_{i = 1}^{\infty} \int_{B_{i}} x(t) ~ \mathrm{d}{\mu(t)}, $$ if $ B_{i} \in \mathfrak{B} $ and $ \mu(B_{i}) < \infty $ for all $ i \in \{ 1,\ldots,n \} $, $ B_{i} \cap B_{j} = \varnothing $ for all distinct $ i,j \in \{ 1,\ldots,n \} $, and $ \displaystyle \left\| \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right\|_{X} \to 0 $ if $ \mu(B) \to 0 $, uniformly for $ B \in \mathfrak{B} $.

3) If $ (x_{n})_{n \in \mathbb{N}} $ is a sequence in $ F $ and $ \displaystyle \lim_{n \to \infty} x_{n} = x $ pointwise almost-everywhere on $ B \in \mathfrak{B} $ with respect to $ \mu $, if $ \| {x_{n}}(\bullet) \|_{X} \leq f $ pointwise almost-everywhere on $ B $ with respect to $ \mu $, and if $ \displaystyle \int_{B} f ~ \mathrm{d}{\mu} < \infty $, then $$ x \in \mathcal{L} \qquad \text{and} \qquad \lim_{n \to \infty} \int_{B} {x_{n}}(t) ~ \mathrm{d}{\mu(t)} = \int_{B} x(t) ~ \mathrm{d}{\mu(t)}. $$

4) The space $ \mathcal{L} $ is complete with respect to the norm (cf. Convergence in norm) $$ \| x - y \|_{\mathcal{L}} \stackrel{\text{df}}{=} \int_{E} \| x(t) - y(t) \|_{X} ~ \mathrm{d}{\mu(t)}. $$

5) If $ T $ is a closed linear operator from a Banach space $ X $ to another $ Y $, and if $$ x \in \mathcal{L}(X;E,\mathfrak{B},\mu) \qquad \text{and} \qquad T \circ x \in \mathcal{L}(Y;E,\mathfrak{B},\mu), $$ then $$ \forall B \in \mathfrak{B}: \quad \int_{B} T(x(t)) ~ \mathrm{d}{\mu(t)} = T \! \left( \int_{B} x(t) ~ \mathrm{d}{\mu(t)} \right). $$ If $ T $ is bounded, then the condition $$ T \circ x \in \mathcal{L}(Y;E,\mathfrak{B},\mu) $$ is automatically fulfilled ([3][5]).

The Bochner integral was introduced by S. Bochner [1]. Equivalent definitions were given by T. Hildebrandt [2] and N. Dunford (the $ D_{0} $-integral).

References

[1] S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind” Fund. Math., 20 (1933), pp. 262–276.
[2] T.H. Hildebrandt, “Integration in abstract spaces” Bull. Amer. Math. Soc., 59 (1953), pp. 111–139.
[3] K. Yosida, “Functional analysis”, Springer (1980), Ch. 8, §1.
[4] E. Hille, R.S. Phillips, “Functional analysis and semi-groups”, Amer. Math. Soc. (1957).
[5] N. Dunford, J.T. Schwartz, “Linear operators. General theory”, 1, Interscience (1958).

Comments

A simple function is also called a step function. A good recent textbook on integrals with values in a Banach space is [a1]; [a4] is specifically about the Bochner-integral.

References

[a1] J. Diestel, J.J. Uhl, Jr., “Vector measures”, Math. Surveys, 15, Amer. Math. Soc. (1977).
[a2] A.C. Zaanen, “Integration”, North-Holland (1967).
[a3] N. Bourbaki, “Elements of mathematics. Integration”, Addison-Wesley (1975), Ch. 6, 7, 8 (translated from French).
[a4] J. Mikusiński, “The Bochner integral”, Acad. Press (1978).
How to Cite This Entry:
Bochner integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bochner_integral&oldid=11334
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article