Namespaces
Variants
Actions

Blow-up algebra

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Geometric description.

Associate to the punctured affine $ n $- space $ X _ {0} = \mathbf A ^ {n} \setminus \{ 0 \} $ over $ \mathbf R $ or $ \mathbf C $, the submanifold $ {\widetilde{X} } _ {0} $ of $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } $ of points $ ( x, [ x ] ) $, where $ x $ varies in $ X _ {0} $ and $ [ x ] $ denotes the equivalence class of $ x $ in the projective $ ( n - 1 ) $- dimensional space. The closure $ {\widetilde{X} } $ of $ {\widetilde{X} } _ {0} $ is smooth and is called the blow-up of $ X = \mathbf A ^ {n} $ with centre the origin. In the real case and for $ n = 2 $ it is equal to the Möbius strip. The mapping $ \pi : { {\widetilde{X} } } \rightarrow X $ induced by the projection $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } \rightarrow \mathbf A ^ {n} $ is an isomorphism over $ X _ {0} $; its fibre over $ 0 $ is $ \mathbf P ^ {n - 1 } $, the exceptional divisor of $ \pi $.

The strict transform $ Y ^ \prime $ of a subvariety $ Y $ of $ X $ is the closure of the inverse image $ \pi ^ {-1 } ( Y \setminus \{ 0 \} ) $ in $ {\widetilde{X} } $. For instance, if $ Y $ is the cuspidal curve $ x ^ {3} = y ^ {2} $ in $ \mathbf A ^ {2} $ parametrized by $ ( t ^ {2} ,t ^ {3} ) $, then $ Y ^ \prime $ is given by $ ( t ^ {2} ,t ^ {3} ,t ) $ and hence is smooth. This forms the simplest example of resolution of singularities by a blow-up.

Higher-dimensional smooth centres $ C $ in $ \mathbf A ^ {n} $ are blown up by decomposing $ \mathbf A ^ {n} $ locally along $ C $ into a Cartesian product $ X _ {1} \times X _ {2} $ of submanifolds, where $ X _ {1} $ is transversal to $ C $ with $ X _ {1} \cap C = \{ p \} $ a point. Then $ {\widetilde{X} } $ is given locally as $ { {X _ {1} } tilde } \times X _ {2} $, where $ { {X _ {1} } tilde } $ denotes the blow-up of $ X _ {1} $ in $ p $.

Algebraic description.

See also [a1]. Let $ A $ be a Noetherian ring and let $ I $ be an ideal of $ A $. Define the blow-up algebra (or Rees algebra) of $ I $ as the graded ring $ S = \oplus _ {k \geq 0 } I ^ {k} $( where $ I ^ {k} $ denotes the $ k $ th power of $ I $, $ I ^ {0} = A $). Then $ Bl _ {I} ( A ) = { \mathop{\rm Proj} } S $ is the blow-up of $ { \mathop{\rm Spec} } A $ with centre $ I $ and coincides with the above construction when $ A $ is the polynomial ring in $ n $ variables over $ \mathbf R $ or $ \mathbf C $. Here, $ { \mathop{\rm Proj} } S $ denotes the algebraic variety or scheme given by all homogeneous prime ideals of $ S $ not containing the ideal $ S _ {+} = \oplus _ {k > 0 } I ^ {k} $, and $ { \mathop{\rm Spec} } A $ is the affine variety or scheme of all prime ideals of $ A $.

Local description.

Any generator system $ x _ {1} \dots x _ {k} $ of $ I $ gives rise to a covering

$$ Bl _ {I} ( A ) = \cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ {I / {x _ {j} } } ] = $$

$$ = \cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ { {x _ {i} } / {x _ {j} } } , 1 \leq i \leq k ] $$

by $ k $ affine charts, the quotients $ { {x _ {i} } / {x _ {j} } } $ being considered as elements of the localization of $ A $ at $ x _ {j} $( cf. Localization in a commutative algebra). In the $ j $ th chart $ {\widetilde{X} } _ {j} $, the morphism $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $ is induced by the inclusion $ A \subset A [ {I / {x _ {j} } } ] $. For $ J $ an ideal of $ A $ contained in $ I $, the strict transform of $ J $ is $ J ^ \prime = \cup _ {n \geq 0 } x _ {j} ^ {- n } ( J \cap I ^ {n} ) {\widetilde{A} } _ {j} $. The exceptional divisor has the equation $ x _ {j} = 0 $. If the centre $ C $ given by the ideal $ I $ of $ A $ is smooth, $ I $ is generated by part of a regular parameter system of $ A $ and $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $ is given by $ x _ {i} \rightarrow x _ {i} x _ {j} $ for $ i \leq k $, $ i \neq j $, and by $ x _ {i} \rightarrow x _ {i} $ for $ i > k $ or $ i = j $.

Properties.

Different centres may induce the same blow-up. A composite of blow-ups is again a blow-up. Blowing up commutes with base change; the strict transform of a variety equals its blow-up in the given centre. The morphism $ \pi $ is birational, proper and surjective (cf. Birational morphism; Proper morphism; Surjection). Any birational projective morphism of quasi-projective varieties (cf. Quasi-projective scheme) is the blowing up of a suitable centre. The singularities of varieties over a field of characteristic $ 0 $ can be resolved by a finite sequence of blow-ups of smooth centres [a2]. In positive characteristic, this has only been proven for dimension $ \leq 3 $[a3]. See [a4] for a survey on resolution of singularities, and [a5] for an account on the role of blow-up algebras in commutative algebra.

References

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001
[a2] H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero" Ann. of Math. , 79 (1964) pp. 109–326 MR0199184 Zbl 0122.38603
[a3] S. Abhyankar, "Resolution of singularities of embedded algebraic surfaces" , Acad. Press (1966) MR0217069 Zbl 0147.20504
[a4] J. Lipman, "Introduction to resolution of singularities" , Proc. Symp. Pure Math. , 29 , Amer. Math. Soc. (1975) pp. 187–230 MR0389901 Zbl 0306.14007
[a5] W. Vasconcelos, "Arithmetic of blowup algebras" , Lecture Notes Ser. , 195 , London Math. Soc. (1994) MR1275840 Zbl 0813.13008
How to Cite This Entry:
Blow-up algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Blow-up_algebra&oldid=46087
This article was adapted from an original article by H. Hauser (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article