Namespaces
Variants
Actions

Difference between revisions of "Bliedtner-Hansen lemma"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (AUTOMATIC EDIT (latexlist): Replaced 48 formulas out of 48 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202901.png" /> be a subset of a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202902.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202903.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202904.png" /> be a positive superharmonic (lower semi-continuous) function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202905.png" /> (cf. also [[Harmonic function|Harmonic function]]; [[Semi-continuous function|Semi-continuous function]]). The balayage <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202906.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202907.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202908.png" /> is defined as the greatest lower semi-continuous minorant of the function
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202909.png" /></td> </tr></table>
+
Out of 48 formulas, 48 were replaced by TEX code.-->
  
Balayaged functions were introduced in classical [[Potential theory|potential theory]] by M. Brelot and play an important role. Given any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029010.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029011.png" />, there is a unique [[Radon measure|Radon measure]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029012.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029013.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029014.png" /> for any superharmonic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029015.png" />. It can proved that
+
{{TEX|semi-auto}}{{TEX|done}}
 +
Let $A$ be a subset of a Euclidean space ${\bf R} ^ { n }$, $n \geq 3$, and let $s$ be a positive superharmonic (lower semi-continuous) function on ${\bf R} ^ { n }$ (cf. also [[Harmonic function|Harmonic function]]; [[Semi-continuous function|Semi-continuous function]]). The balayage $\hat { R } _ { S } ^ { A }$ of $s$ on $A$ is defined as the greatest lower semi-continuous minorant of the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation*} R _ { s } ^ { A } : = \operatorname { inf } \left\{ t : \begin{array} { l } \ {t \ \text{superharmonic on}\ \mathbf{R}^{n} , } \\ { t \geq s \ \text{on} \ A } \end{array} \right\}. \end{equation*}
  
If, now, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029017.png" /> is a bounded open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029019.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029020.png" /> is a [[Borel function|Borel function]] on the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029021.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029022.png" />, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029023.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029024.png" />, which is harmonic on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029025.png" />, represents a generalized solution of the classical [[Dirichlet problem|Dirichlet problem]]. According to (a1),  "the solution of a solution is again a solution" . More precisely, given a (bounded) Borel function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029026.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029027.png" />, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029028.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029030.png" />, is a Borel function and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029031.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029032.png" />.
+
Balayaged functions were introduced in classical [[Potential theory|potential theory]] by M. Brelot and play an important role. Given any set $A \subset \mathbf{R} ^ { n }$ and any $x \in \mathbf{R} ^ { n }$, there is a unique [[Radon measure|Radon measure]] $\varepsilon _ { X } ^ { A }$ on ${\bf R} ^ { n }$ such that $\varepsilon _ { x } ^ { A } ( s ) = \widehat { R } _ { s } ^ { A } ( x )$ for any superharmonic function $s$. It can proved that
  
The last assertion, as well (a1), fails to be valid in more general situations such as, for example, the case of solutions of the [[Heat equation|heat equation]]. Replace now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029033.png" /> by an abstract <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029036.png" />-harmonic space (in the axiomatic sense of C. Constantinescu and A. Cornea; see [[#References|[a4]]]). By this one understands a locally compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029037.png" /> having a countable base equipped with a [[Sheaf|sheaf]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029038.png" /> of  "harmonic"  functions. Main model examples of abstract harmonic spaces are described by solutions of the [[Laplace equation|Laplace equation]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029039.png" /> and of the [[Heat equation|heat equation]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029040.png" />. Notice also that (a1) expresses nothing else than the axiom of polarity, and this axiom is fulfilled for the first model but fails for the second one.
+
\begin{equation} \tag{a1} \hat { R } _ { \hat{R} _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } {\bf R} ^ { n } \end{equation}
  
One may introduced on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029041.png" /> a class of superharmonic functions in a natural way and, as above, one may define balayages of superharmonic functions. As superharmonic functions are lower semi-continuous only, one defines the fine topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029042.png" /> as the [[Weak topology|weak topology]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029043.png" /> generated by the family of all superharmonic functions. This new topology was introduced in classical potential theory by Brelot and H. Cartan around 1940 and later on intensively studied, even in the axiomatic setting of harmonic spaces.
+
If, now, $U$ is a bounded open subset of ${\bf R} ^ { n }$, $\mathcal{C} U : = \mathbf{R} ^ { n } \backslash U$, and $f$ is a [[Borel function|Borel function]] on the boundary $\partial U$ of $U$, then the function $H _ { f } ^ { U }$: $x \mapsto \varepsilon _ { x } ^ { \mathcal{C}U } ( f )$, which is harmonic on $U$, represents a generalized solution of the classical [[Dirichlet problem|Dirichlet problem]]. According to (a1),  "the solution of a solution is again a solution" . More precisely, given a (bounded) Borel function $f$ on $\partial U$, then the function $g$: $z \mapsto \varepsilon _ { z } ^ { {\cal C} U } ( f )$, $z \in \partial U$, is a Borel function and $\varepsilon _ { X } ^ { \mathcal{C} U } ( g ) = \varepsilon _ { X } ^ { \mathcal{C} U } ( f )$ for any $x \in U$.
  
As mentioned above, (a1) is no more valid in abstract harmonic spaces without the presence of the axiom of polarity. Nevertheless, the fundamental Bliedtner–Hansen lemma, which is closely related to (a1), allows one to derive strong results in abstract harmonic spaces. It says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029044.png" />, provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029046.png" /> are open in the fine topology, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029047.png" /> is a Borel set in the original topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029049.png" />.
+
The last assertion, as well (a1), fails to be valid in more general situations such as, for example, the case of solutions of the [[Heat equation|heat equation]]. Replace now ${\bf R} ^ { n }$ by an abstract $\mathcal{P}$-harmonic space (in the axiomatic sense of C. Constantinescu and A. Cornea; see [[#References|[a4]]]). By this one understands a locally compact space $X$ having a countable base equipped with a [[Sheaf|sheaf]] $\mathcal{H}$ of  "harmonic" functions. Main model examples of abstract harmonic spaces are described by solutions of the [[Laplace equation|Laplace equation]] in ${\bf R} ^ { n }$ and of the [[Heat equation|heat equation]] in $\mathbf R ^ { n + 1 }$. Notice also that (a1) expresses nothing else than the axiom of polarity, and this axiom is fulfilled for the first model but fails for the second one.
  
The powerful result of J. Bliedtner and W. Hansen can be stated in various degrees of generality. It appeared originally in [[#References|[a1]]] and can be proved also in the framework of balayage spaces [[#References|[a2]]] or even of standard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029051.png" />-cones [[#References|[a3]]]. Detailed proofs of the Bliedtner–Hansen lemma can be found in [[#References|[a5]]].
+
One may introduced on $X$ a class of superharmonic functions in a natural way and, as above, one may define balayages of superharmonic functions. As superharmonic functions are lower semi-continuous only, one defines the fine topology on $X$ as the [[Weak topology|weak topology]] on $X$ generated by the family of all superharmonic functions. This new topology was introduced in classical potential theory by Brelot and H. Cartan around 1940 and later on intensively studied, even in the axiomatic setting of harmonic spaces.
 +
 
 +
As mentioned above, (a1) is no more valid in abstract harmonic spaces without the presence of the axiom of polarity. Nevertheless, the fundamental Bliedtner–Hansen lemma, which is closely related to (a1), allows one to derive strong results in abstract harmonic spaces. It says that $\varepsilon _ { x } ^ { X \backslash V } ( R _ { s } ^ { X \backslash U } ) = R _ { s } ^ { X \backslash U } ( x )$, provided $U$ and $V$ are open in the fine topology, $U$ is a Borel set in the original topology of $X$ and $x \in V \subset U \subset X$.
 +
 
 +
The powerful result of J. Bliedtner and W. Hansen can be stated in various degrees of generality. It appeared originally in [[#References|[a1]]] and can be proved also in the framework of balayage spaces [[#References|[a2]]] or even of standard $H$-cones [[#References|[a3]]]. Detailed proofs of the Bliedtner–Hansen lemma can be found in [[#References|[a5]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Bliedtner,  W. Hansen,  "Cones of hyperharmonic functions"  ''Math. Z.'' , '''151'''  (1976)  pp. 71–87</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Bliedtner,  W. Hansen,  "Balayage spaces: An analytic and probabilistic approach to balayage" , ''Universitext'' , Springer  (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N. Boboc,  Gh. Bucur,  A. Cornea,  "Order and convexity in potential theory: H-cones" , ''Lecture Notes Math.'' , '''853''' , Springer  (1981)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  C. Constantinescu,  A. Cornea,  "Potential theory on harmonic spaces" , Springer  (1972)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J. Lukeš,  J. Malý,  L. Zajíček,  "Fine topology methods in real analysis and potential theory" , ''Lecture Notes Math.'' , '''1189''' , Springer  (1986)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  J. Bliedtner,  W. Hansen,  "Cones of hyperharmonic functions"  ''Math. Z.'' , '''151'''  (1976)  pp. 71–87</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J. Bliedtner,  W. Hansen,  "Balayage spaces: An analytic and probabilistic approach to balayage" , ''Universitext'' , Springer  (1986)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  N. Boboc,  Gh. Bucur,  A. Cornea,  "Order and convexity in potential theory: H-cones" , ''Lecture Notes Math.'' , '''853''' , Springer  (1981)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  C. Constantinescu,  A. Cornea,  "Potential theory on harmonic spaces" , Springer  (1972)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  J. Lukeš,  J. Malý,  L. Zajíček,  "Fine topology methods in real analysis and potential theory" , ''Lecture Notes Math.'' , '''1189''' , Springer  (1986)</td></tr></table>

Latest revision as of 16:57, 1 July 2020

Let $A$ be a subset of a Euclidean space ${\bf R} ^ { n }$, $n \geq 3$, and let $s$ be a positive superharmonic (lower semi-continuous) function on ${\bf R} ^ { n }$ (cf. also Harmonic function; Semi-continuous function). The balayage $\hat { R } _ { S } ^ { A }$ of $s$ on $A$ is defined as the greatest lower semi-continuous minorant of the function

\begin{equation*} R _ { s } ^ { A } : = \operatorname { inf } \left\{ t : \begin{array} { l } \ {t \ \text{superharmonic on}\ \mathbf{R}^{n} , } \\ { t \geq s \ \text{on} \ A } \end{array} \right\}. \end{equation*}

Balayaged functions were introduced in classical potential theory by M. Brelot and play an important role. Given any set $A \subset \mathbf{R} ^ { n }$ and any $x \in \mathbf{R} ^ { n }$, there is a unique Radon measure $\varepsilon _ { X } ^ { A }$ on ${\bf R} ^ { n }$ such that $\varepsilon _ { x } ^ { A } ( s ) = \widehat { R } _ { s } ^ { A } ( x )$ for any superharmonic function $s$. It can proved that

\begin{equation} \tag{a1} \hat { R } _ { \hat{R} _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } {\bf R} ^ { n } \end{equation}

If, now, $U$ is a bounded open subset of ${\bf R} ^ { n }$, $\mathcal{C} U : = \mathbf{R} ^ { n } \backslash U$, and $f$ is a Borel function on the boundary $\partial U$ of $U$, then the function $H _ { f } ^ { U }$: $x \mapsto \varepsilon _ { x } ^ { \mathcal{C}U } ( f )$, which is harmonic on $U$, represents a generalized solution of the classical Dirichlet problem. According to (a1), "the solution of a solution is again a solution" . More precisely, given a (bounded) Borel function $f$ on $\partial U$, then the function $g$: $z \mapsto \varepsilon _ { z } ^ { {\cal C} U } ( f )$, $z \in \partial U$, is a Borel function and $\varepsilon _ { X } ^ { \mathcal{C} U } ( g ) = \varepsilon _ { X } ^ { \mathcal{C} U } ( f )$ for any $x \in U$.

The last assertion, as well (a1), fails to be valid in more general situations such as, for example, the case of solutions of the heat equation. Replace now ${\bf R} ^ { n }$ by an abstract $\mathcal{P}$-harmonic space (in the axiomatic sense of C. Constantinescu and A. Cornea; see [a4]). By this one understands a locally compact space $X$ having a countable base equipped with a sheaf $\mathcal{H}$ of "harmonic" functions. Main model examples of abstract harmonic spaces are described by solutions of the Laplace equation in ${\bf R} ^ { n }$ and of the heat equation in $\mathbf R ^ { n + 1 }$. Notice also that (a1) expresses nothing else than the axiom of polarity, and this axiom is fulfilled for the first model but fails for the second one.

One may introduced on $X$ a class of superharmonic functions in a natural way and, as above, one may define balayages of superharmonic functions. As superharmonic functions are lower semi-continuous only, one defines the fine topology on $X$ as the weak topology on $X$ generated by the family of all superharmonic functions. This new topology was introduced in classical potential theory by Brelot and H. Cartan around 1940 and later on intensively studied, even in the axiomatic setting of harmonic spaces.

As mentioned above, (a1) is no more valid in abstract harmonic spaces without the presence of the axiom of polarity. Nevertheless, the fundamental Bliedtner–Hansen lemma, which is closely related to (a1), allows one to derive strong results in abstract harmonic spaces. It says that $\varepsilon _ { x } ^ { X \backslash V } ( R _ { s } ^ { X \backslash U } ) = R _ { s } ^ { X \backslash U } ( x )$, provided $U$ and $V$ are open in the fine topology, $U$ is a Borel set in the original topology of $X$ and $x \in V \subset U \subset X$.

The powerful result of J. Bliedtner and W. Hansen can be stated in various degrees of generality. It appeared originally in [a1] and can be proved also in the framework of balayage spaces [a2] or even of standard $H$-cones [a3]. Detailed proofs of the Bliedtner–Hansen lemma can be found in [a5].

References

[a1] J. Bliedtner, W. Hansen, "Cones of hyperharmonic functions" Math. Z. , 151 (1976) pp. 71–87
[a2] J. Bliedtner, W. Hansen, "Balayage spaces: An analytic and probabilistic approach to balayage" , Universitext , Springer (1986)
[a3] N. Boboc, Gh. Bucur, A. Cornea, "Order and convexity in potential theory: H-cones" , Lecture Notes Math. , 853 , Springer (1981)
[a4] C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972)
[a5] J. Lukeš, J. Malý, L. Zajíček, "Fine topology methods in real analysis and potential theory" , Lecture Notes Math. , 1189 , Springer (1986)
How to Cite This Entry:
Bliedtner-Hansen lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bliedtner-Hansen_lemma&oldid=22143
This article was adapted from an original article by J. Lukeš (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article