Namespaces
Variants
Actions

Difference between revisions of "Binomial series"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
b0164301.png
 +
$#A+1 = 31 n = 1
 +
$#C+1 = 31 : ~/encyclopedia/old_files/data/B016/B.0106430 Binomial series
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A power series of the form
 
A power series of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b0164301.png" /></td> </tr></table>
+
$$
 +
\sum _ { n=0 } ^  \infty 
 +
\left ( \begin{array}{c}
 +
\alpha \\
 +
n
 +
\end{array}
 +
  \right ) z  ^ {n}  = 1
 +
+ \left ( \begin{array}{c}
 +
\alpha \\
 +
1
 +
\end{array}
 +
  \right ) z +
 +
\left ( \begin{array}{c}
 +
\alpha \\
 +
2
 +
\end{array}
 +
  \right ) z  ^ {2} + \dots ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b0164302.png" /> is an integer and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b0164303.png" /> is an arbitrary fixed number (in general, a complex number), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b0164304.png" /> is a complex variable, and the
+
where $  n $
 +
is an integer and $  \alpha $
 +
is an arbitrary fixed number (in general, a complex number), $  z = x + iy $
 +
is a complex variable, and the
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b0164305.png" /></td> </tr></table>
+
$$
 +
\left ( \begin{array}{c}
 +
\alpha \\
 +
n
 +
\end{array}
 +
  \right )
 +
$$
  
are the [[Binomial coefficients|binomial coefficients]]. For an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b0164306.png" /> the binomial series reduces to a finite sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b0164307.png" /> terms
+
are the [[Binomial coefficients|binomial coefficients]]. For an integer $  \alpha = m \geq  0 $
 +
the binomial series reduces to a finite sum of $  m + 1 $
 +
terms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b0164308.png" /></td> </tr></table>
+
$$
 +
(1+z)  ^ {m}  = 1 + mz +
 +
{
 +
\frac{m(m-1)}{2!}
 +
} z  ^ {2} + \dots + z  ^ {m} ,
 +
$$
  
which is known as the [[Newton binomial|Newton binomial]]. For other values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b0164309.png" /> the binomial series converges absolutely for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643010.png" /> and diverges for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643011.png" />. At points of the unit circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643012.png" /> the binomial series behaves as follows: 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643013.png" />, it converges absolutely at all points; 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643014.png" />, it diverges at all points; and 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643015.png" />, the binomial series diverges at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643016.png" /> and converges conditionally at all other points. At all points of convergence, the binomial series represents the principal value of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643017.png" /> which is equal to one at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643018.png" />. The binomial series is a special case of a [[Hypergeometric series|hypergeometric series]].
+
which is known as the [[Newton binomial|Newton binomial]]. For other values of $  \alpha $
 +
the binomial series converges absolutely for $  | z | <1 $
 +
and diverges for $  | z | > 1 $.  
 +
At points of the unit circle $  | z | = 1 $
 +
the binomial series behaves as follows: 1) if $  \mathop{\rm Re}  \alpha > 0 $,  
 +
it converges absolutely at all points; 2) if $  \mathop{\rm Re}  \alpha \leq  -1 $,  
 +
it diverges at all points; and 3) if $  -1 < \mathop{\rm Re}  \alpha \leq  0 $,  
 +
the binomial series diverges at the point $  z = -1 $
 +
and converges conditionally at all other points. At all points of convergence, the binomial series represents the principal value of the function $  {(1 + z) }  ^  \alpha  $
 +
which is equal to one at $  z = 0 $.  
 +
The binomial series is a special case of a [[Hypergeometric series|hypergeometric series]].
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643020.png" /> are real numbers, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643021.png" /> is not a non-negative integer, the binomial series behaves as follows: 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643022.png" />, it converges absolutely on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643023.png" />; 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643024.png" />, it converges absolutely in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643025.png" /> and diverges at all other values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643026.png" />; and 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643027.png" />, the binomial series converges absolutely in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643028.png" />, converges conditionally at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643029.png" />, and diverges for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643030.png" />; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016430/b01643031.png" /> the binomial series always diverges.
+
If $  z = x $
 +
and $  \alpha $
 +
are real numbers, and $  \alpha $
 +
is not a non-negative integer, the binomial series behaves as follows: 1) if $  \alpha > 0 $,  
 +
it converges absolutely on $  -1 \leq  x \leq  1 $;  
 +
2) if $  \alpha \leq  -1 $,  
 +
it converges absolutely in $  -1 < x < 1 $
 +
and diverges at all other values of $  x $;  
 +
and 3) if $  -1 < \alpha \leq  0 $,  
 +
the binomial series converges absolutely in $  -1 < x < 1 $,  
 +
converges conditionally at $  x = 1 $,  
 +
and diverges for $  x = -1 $;  
 +
for $  | x | > 1 $
 +
the binomial series always diverges.
  
 
Binomial series were probably first mentioned by I. Newton in 1664–1665. An exhaustive study of binomial series was conducted by N.H. Abel [[#References|[1]]], and was the starting point of the theory of complex power series.
 
Binomial series were probably first mentioned by I. Newton in 1664–1665. An exhaustive study of binomial series was conducted by N.H. Abel [[#References|[1]]], and was the starting point of the theory of complex power series.

Revision as of 10:59, 29 May 2020


A power series of the form

$$ \sum _ { n=0 } ^ \infty \left ( \begin{array}{c} \alpha \\ n \end{array} \right ) z ^ {n} = 1 + \left ( \begin{array}{c} \alpha \\ 1 \end{array} \right ) z + \left ( \begin{array}{c} \alpha \\ 2 \end{array} \right ) z ^ {2} + \dots , $$

where $ n $ is an integer and $ \alpha $ is an arbitrary fixed number (in general, a complex number), $ z = x + iy $ is a complex variable, and the

$$ \left ( \begin{array}{c} \alpha \\ n \end{array} \right ) $$

are the binomial coefficients. For an integer $ \alpha = m \geq 0 $ the binomial series reduces to a finite sum of $ m + 1 $ terms

$$ (1+z) ^ {m} = 1 + mz + { \frac{m(m-1)}{2!} } z ^ {2} + \dots + z ^ {m} , $$

which is known as the Newton binomial. For other values of $ \alpha $ the binomial series converges absolutely for $ | z | <1 $ and diverges for $ | z | > 1 $. At points of the unit circle $ | z | = 1 $ the binomial series behaves as follows: 1) if $ \mathop{\rm Re} \alpha > 0 $, it converges absolutely at all points; 2) if $ \mathop{\rm Re} \alpha \leq -1 $, it diverges at all points; and 3) if $ -1 < \mathop{\rm Re} \alpha \leq 0 $, the binomial series diverges at the point $ z = -1 $ and converges conditionally at all other points. At all points of convergence, the binomial series represents the principal value of the function $ {(1 + z) } ^ \alpha $ which is equal to one at $ z = 0 $. The binomial series is a special case of a hypergeometric series.

If $ z = x $ and $ \alpha $ are real numbers, and $ \alpha $ is not a non-negative integer, the binomial series behaves as follows: 1) if $ \alpha > 0 $, it converges absolutely on $ -1 \leq x \leq 1 $; 2) if $ \alpha \leq -1 $, it converges absolutely in $ -1 < x < 1 $ and diverges at all other values of $ x $; and 3) if $ -1 < \alpha \leq 0 $, the binomial series converges absolutely in $ -1 < x < 1 $, converges conditionally at $ x = 1 $, and diverges for $ x = -1 $; for $ | x | > 1 $ the binomial series always diverges.

Binomial series were probably first mentioned by I. Newton in 1664–1665. An exhaustive study of binomial series was conducted by N.H. Abel [1], and was the starting point of the theory of complex power series.

References

[1] N.H. Abel, "Untersuchungen über die Reihe " J. Reine Angew. Math. , 1 (1826) pp. 311–339
[2] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)
[3] A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian)
How to Cite This Entry:
Binomial series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Binomial_series&oldid=17445
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article