Namespaces
Variants
Actions

Biholomorphic mapping

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

holomorphic isomorphism, holomorphism, pseudo-conformal mapping

A generalization of the concept of a univalent conformal mapping to the case of several complex variables. A holomorphic mapping of a domain $D\subset\mathbf C^n$ onto a domain $D'\subset\mathbf C^n$ is said to be a biholomorphic mapping if it is one-to-one. A biholomorphic mapping is non-degenerate in $D$; its inverse mapping is also a biholomorphic mapping.

A domain of holomorphy is mapped into a domain of holomorphy under a biholomorphic mapping; holomorphic, pluriharmonic and plurisubharmonic functions are also invariant under a biholomorphic mapping. If $n>1$, biholomorphic mappings are not conformal (except for a number of linear mappings) and the Riemann theorem is invalid for biholomorphic mappings (e.g. a ball and a polydisc in $\mathbf C^2$ cannot be biholomorphically mapped onto each other). A biholomorphic mapping of a domain $D$ onto itself is said to be a (holomorphic) automorphism; if $n>1$, there exist simply-connected domains without automorphisms other than the identity mapping.

References

[1] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian)


Comments

Concerning boundary behaviour of biholomorphic mappings the following results have been obtained. C. Fefferman's theorem: A biholomorphic mapping between strongly pseudo-convex domains with $C^\infty$-smooth boundary extends $C^\infty$-smoothly to a diffeomorphism between the closures of the domains, see [a3]. The same result holds if the domains are only pseudo-convex and one of them satisfies condition $R$ for the Bergman projection, see [a2]. For strongly pseudo-convex domains with $C^k$-boundary, $k>2$, $C^{k-1-\epsilon}$ extendability was obtained ($\epsilon>0$ if $k=2,3,\dots,$ $\epsilon=0$ otherwise) by L. Lempert and by S. Pinčuk. For (weakly) pseudo-convex domains with real-analytic boundary one has even holomorphic extension to a neighbourhood of the closure, see [a1]. Similar results were obtained for proper holomorphic mappings.

A biholomorphic mapping $f$ is proper (i.e. the pre-image of a compact set is compact), since $f^{-1}$ is continuous. Riemann's theorem does not hold in the following sense: There is no proper holomorphic mapping from the polydisc in $\mathbf C^n$ onto the ball in $\mathbf C^m$ for any $n,m>1$, cf. [a4]. Thus, function theory in $\mathbf C^n$, $n\geq1$, is strongly related to the domain of definition of the functions. For function theory in the (unit) ball of $\mathbf C^n$ see [a5]; for function theory in polydiscs see [a6]. For entire holomorphic mappings and their value distribution see [a7].

References

[a1] M.S. Baouendi, H. Jacobowitz, F. Trèves, "On the analyticity of CR mappings" Ann. of Math. , 122 (1985) pp. 365–400
[a2] St. Bell, "Biholomorphic mappings and the $\partial$ problem" Ann. of Math. , 114 (1981) pp. 103–113
[a3] C. Fefferman, "The Bergman kernel and biholomorphic mappings of pseudoconvex domains" Inv. Math. , 26 (1974) pp. 1–65
[a4] S.G. Krantz, "Function theory of several complex variables" , Wiley (1982) pp. Chapt. 10
[a5] W. Rudin, "Function theory in the unit ball in $\mathbf C^n$" , Springer (1980)
[a6] W. Rudin, "Function theory in polydiscs" , Benjamin (1969)
[a7] Ph.A. Griffiths, "Entire holomorphic mappings in one and several variables" , Annals Math. Studies , 85 , Princeton Univ. Press (1976)
How to Cite This Entry:
Biholomorphic mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Biholomorphic_mapping&oldid=33098
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article