Namespaces
Variants
Actions

Bezout ring

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An Integral domain with a unit element in which any ideal of finite type is principal. Any principal ideal ring and also any valuation ring is Bezout. A Bezout ring is integrally closed, and its localizations (i.e. its rings of fractions with respect to multiplicative systems $S$, cf. Localization in a commutative algebra) are again Bezout rings. For a finite set $a_1,\ldots,a_n$ of elements of a Bezout ring $A$ there exist a greatest common divisor (a greatest common divisor of $(a_1,\ldots,a_n)$ has the form $\sum b_i a_i$, $b_i \in A$, a so-called Bezout identity) and a least common multiple. A Noetherian ring (and even a ring that satisfies the ascending chain condition only for principal ideals) which is Bezout is a principal ideal ring. As for principal ideal rings, a module of finite type over a Bezout ring is a direct sum of a torsion module and a free module.


Comments

References

[a1] R. Gilmer, "Multiplicative ideal theory" , M. Dekker (1972)
How to Cite This Entry:
Bezout ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bezout_ring&oldid=34242
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article