Namespaces
Variants
Actions

Best linear method

From Encyclopedia of Mathematics
Revision as of 10:58, 29 May 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


With respect to the approximation of elements in a given set $ \mathfrak M $, the linear method that yields the smallest error among all linear methods. In a normed linear space $ X $, a linear method for the approximation of elements $ x \in \mathfrak M \subset X $ by elements of a fixed subspace $ F \subset X $ is represented by a linear operator that maps the entire space $ X $, or some linear manifold containing $ \mathfrak M $, into $ F $. If $ {\mathcal L} $ is the set of all such operators, a best linear method for $ \mathfrak M $( if it exists) is defined by an operator $ \widetilde{A} \in {\mathcal L} $ for which

$$ \sup _ {x \in \mathfrak M } \ \| x - \widetilde{A} x \| = \ \inf _ {A \in {\mathcal L} } \ \sup _ {x \in \mathfrak M } \ \| x - Ax \| . $$

The method defined by an operator $ A $ in $ {\mathcal L} $ will certainly be a best linear method for $ \mathfrak M $ relative to the approximating set $ F $ if, for all $ x \in \mathfrak M $,

$$ \| x - Ax \| \leq \ \sup _ {x \in \mathfrak M } E (x, F) $$

( $ E (x, F) $ is the best approximation of $ x $ by $ F $) and if, moreover, for all $ x \in X $,

$$ \| x - Ax \| = E (x, F). $$

The latter is certainly true if $ X $ is a Hilbert space, $ F = F _ {n} $ is an $ n $- dimensional subspace of $ X $, $ n = 1, 2 \dots $ and $ A $ is the orthogonal projection onto $ F _ {n} $, i.e.

$$ Ax = \ \sum _ {k = 1 } ^ { n } (x, e _ {k} ) e _ {k} , $$

where $ \{ e _ {1} \dots e _ {n} \} $ is an orthonormal basis in $ F _ {n} $.

Let $ X $ be a Banach space of functions defined on the entire real line, with a translation-invariant norm: $ \| x ( \cdot + \tau ) \| = \| x ( \cdot ) \| $( this condition holds, e.g. for the norms of the spaces $ C = C [0, 2 \pi ] $ and $ L _ {p} = L _ {p} (0, 2 \pi ) $, $ 1 \leq p \leq \infty $, of $ 2 \pi $- periodic functions); let $ F = T _ {n} $ be the subspace of trigonometric polynomials of order $ n $. There exist best linear methods (relative to $ T _ {n} $) for a class $ \mathfrak M $ of functions $ x (t) \in X $ that contains $ x (t + \alpha ) $ for any $ \alpha \in \mathbf R $ whenever it contains $ x (t) $. An example is the linear method

$$ \tag{* } A (x; t; \mu , \nu ) = \frac{\mu _ {0} a _ {0} }{2} + $$

$$ + \sum _ {k = 1 } ^ { n } \{ \mu _ {k} (a _ {k} \cos kt + b _ {k} \ \sin kt) + \nu _ {k} (a _ {k} \sin kt - b _ {k} \cos kt) \} , $$

where $ a _ {k} $ and $ b _ {k} $ are the Fourier coefficients of $ x (t) $ relative to the trigonometric system, and $ \mu _ {k} $ and $ \nu _ {k} $ are numbers.

Now consider the classes $ W _ \infty ^ {r} M $( and $ W _ {1} ^ {r} M $), $ r = 1, 2 \dots $ of $ 2 \pi $- periodic functions $ x (t) $ whose derivatives $ x ^ {(r - 1) } (t) $ are locally absolutely continuous and whose derivatives $ x ^ {(r)} (t) $ are bounded in norm in $ L _ \infty $( respectively, in $ L _ {1} $) by a number $ M $. For these classes, best linear methods of the type (*) yield the same error (over the entire class) in the metric of $ C $( respectively, $ L _ {1} $) as the best approximation by a subspace $ T _ {n} $; the analogous assertion is true for these classes with any rational number $ r > 0 $( interpreting the derivatives $ x ^ {(r)} (t) $ in the sense of Weyl). For integers $ r = 1, 2 \dots $ best linear methods of type (*) have been constructed using only the coefficients $ \mu _ {k} $( all $ \nu _ {k} = 0 $).

If $ F = S _ {n} ^ {r} $ is the subspace of $ 2 \pi $- periodic polynomial splines of order $ r $ and defect 1 with respect to the partition $ k \pi /n $, $ k = 0, \pm 1 \dots $ then a best linear method for the classes $ W _ \infty ^ {r + 1 } M $( and $ W _ {1} ^ {r + 1 } $), $ r = 1, 2 \dots $ is achieved in $ L _ {p} $, $ 1 \leq p \leq \infty $( resp. in $ L _ {1} $) by splines in $ S _ {n} ^ {r} $ interpolating the function $ x (t) $ at the points $ k \pi /n + [1 + (-1) ^ {r} ] \pi /4n $.

References

[1] N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)
[2] N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)
[3] V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)

Comments

References

[a1] H. Kiesewetter, "Vorlesungen über lineare Approximation" , Deutsch. Verlag Wissenschaft. (1973)
[a2] J.R. Rice, "The approximation of functions" , 1. Linear theory , Addison-Wesley (1964)
How to Cite This Entry:
Best linear method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Best_linear_method&oldid=46042
This article was adapted from an original article by N.P. KorneichukV.P. Motornyi (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article