Namespaces
Variants
Actions

Bessel polynomials

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Related to Bessel functions, [a2], the Bessel polynomials $ \{ y _ {n} ( x,a,b ) \} _ {n = 0 } ^ \infty $ satisfy

$$ x ^ {2} y ^ {\prime \prime } + ( ax + b ) y _ {n} ^ \prime - n ( n + a - 1 ) y = 0 $$

and are given by

$$ y _ {n} ( x,a,b ) = \sum _ {k = 0 } ^ { n } { \frac{n! \Gamma ( n + k + a - 1 ) ( {x / b } ) ^ {k} }{k! ( n - k ) ! \Gamma ( n + a - 1 ) } } . $$

The ordinary Bessel polynomials are those found with $ a = b = 2 $, [a2].

The moments associated with the Bessel polynomials satisfy

$$ ( n + a - 1 ) \mu _ {n} + b \mu _ {n - 1 } = 0, \quad n =0,1 \dots $$

and are given by $ \mu _ {n} = { {( - b ) ^ {n + 1 } } / {a ( a + 1 ) \dots ( a + n - 1 ) } } $.

The weight equation is

$$ x ^ {2} w ^ \prime + ( ( 2 - a ) x - b ) w = N ( x ) , $$

where $ N ( x ) $ is any function with $ 0 $ moments. This equation has been solved when

$$ N ( x ) = H ( x ) e ^ {- x ^ { {1 / 4 } } } { \mathop{\rm sn} } x ^ { {1 / 4 } } , $$

where

$$ H ( x ) = \left \{ \begin{array}{l} {1, \ x \geq 0, } \\ {0, \ x < 0, } \end{array} \right . $$

when $ b = 2 $( no restriction), $ a - 2 = 2 \alpha $ and $ \alpha > 6 ( {2 / \pi } ) ^ {4} $, [a3]. The weight for the ordinary Bessel polynomials was found by S.S. Kim, K.H. Kwon and S.S. Han, [a1], after over 40 years of search.

Using the three-term recurrence relation

$$ ( n + a - 1 ) ( 2n + a - 2 ) y _ {n + 1 } ( x,a,b ) = $$

$$ = \left [ ( 2n + a ) ( 2n + a - 2 ) \left ( { \frac{x}{b} } \right ) + ( a - 2 ) \right ] \cdot $$

$$ \cdot ( 2n + a - 1 ) y _ {n} + n ( 2n + a ) y _ {n - 1 } , $$

the norm square $ \int _ {0} ^ \infty {g _ {n} ( x,a,b ) ^ {2} w ( x ) } {dx } $ is easily calculated and equals $ { {( - b ) ^ {k + 1 } k ^ {( n ) } } / {( k + a + n _ {1} ) ^ {( k + n ) } } } $, [a2], where $ x ^ {( k ) } = x ( x - 1 ) \dots ( x - k + 1 ) $. Clearly, $ w $ generates a Krein space on $ [ 0, \infty ) $.

References

[a1] S.S. Kim, K.H. Kwon, S.S. Han, "Orthogonalizing weights of Tchebychev sets of polynomials" Bull. London Math. Soc. , 24 (1992) pp. 361–367
[a2] H.L. Krall, O. Frink, "A new class of orthogonal polynomials: The Bessel polynomials" Trans. Amer. Math. Soc. , 63 (1949) pp. 100–115
[a3] P. Maroni, "An integral representation for the Bessel form" J. Comp. Appl. Math. , 57 (1995) pp. 251–260
How to Cite This Entry:
Bessel polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bessel_polynomials&oldid=46035
This article was adapted from an original article by A.M. Krall (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article