Namespaces
Variants
Actions

Bernstein polynomials

From Encyclopedia of Mathematics
Revision as of 10:58, 29 May 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Algebraic polynomials defined by the formula

$$ B _ {n} (f; x ) = \ B _ {n} (x ) = $$

$$ = \ \sum _ { k=0 } ^ { n } f \left ( { \frac{k}{n} } \right ) \left ( \begin{array}{c} n \\ k \end{array} \right ) x ^ {k} (1-x) ^ {n-k} ,\ n = 1, 2 ,\dots . $$

Introduced by S.N. Bernshtein in 1912 (cf. ). The sequence of Bernstein polynomials converges uniformly to a function $ f $ on the segment $ 0 \leq x \leq 1 $ if $ f $ is continuous on this segment. For a function which is bounded by $ C $, $ 0 < C < 1 $, with a discontinuity of the first kind,

$$ B _ {n} (f; C) \rightarrow \ { \frac{f (C _ {-} ) + f (C _ {+} ) }{2} } . $$

The equation

$$ B _ {n} (f; c) - f (c) = \ \frac{f ^ { \prime\prime } (c)c(1-c) }{2n} + o \left ( \frac{1}{n} \right ) $$

is valid if $ f $ is twice differentiable at the point $ c $. If the $ k $- th derivative $ f ^ { (k) } $ of the function is continuous on the segment $ 0 \leq x \leq 1 $, the convergence

$$ B _ {n} ^ { (k) } (f; x) \rightarrow f ^ { (k) } (x) $$

is uniform on this segment. A study was made ([1b], [5]) of the convergence of Bernstein polynomials in the complex plane if $ f $ is analytic on the segment $ 0 \leq x \leq 1 $.

References

[1a] S.N. Bernshtein, , Collected works , 1 , Moscow (1952) pp. 105–106
[1b] S.N. Bernshtein, , Collected works , 2 , Moscow (1954) pp. 310–348
[2] V.L. Goncharov, "The theory of interpolation and approximation of functions" , Moscow (1954) (In Russian)
[3] V.A. Baskakov, "An instance of a sequence of linear positive operators in the space of continuous functions" Dokl. Akad. Nauk SSSR , 113 : 2 (1957) pp. 249–251 (In Russian)
[4] P.P. Korovkin, "Linear operators and approximation theory" , Hindushtan Publ. Comp. (1960) (Translated from Russian)
[5] L.V. Kantorovich, Izv. Akad. Nauk SSSR Ser. Mat. , 8 (1931) pp. 1103–1115

Comments

There is also a multi-variable generalization: generalized Bernstein polynomials defined by the completely analogous formula

$$ B _ {\mathbf n } (f, x _ {1} \dots x _ {k} ) = $$

$$ = \ \sum _ { i _ {1} = 0 } ^ { {n _ 1 } } \dots \sum _ {i _ {k} = 0 } ^ { {n _ k} } f \left ( \frac{i _ {1} }{n _ {1} } \dots \frac{i _ {k} }{n _ {k} } \right ) \ \left ( \begin{array}{c} n _ {1} \\ i _ {1} \end{array} \right ) \dots \left ( \begin{array}{c} n _ {k} \\ i _ {k} \end{array} \right ) \times $$

$$ \times x _ {1} ^ {i _ {1} } (1 - x _ {1} ) ^ {n _ {1} - i _ {1} } \dots x _ {k} ^ {i _ {k} } (1 - x _ {k} ) ^ {n _ {k} - i _ {k} } . $$

Here $ \mathbf n $ stands for the multi-index $ \mathbf n = ( n _ {1} \dots n _ {k} ) $.

As in the one variable case these provide explicit polynomial approximants for the more-variable Weierstrass approximation and Stone–Weierstrass theorems. For the behaviour of Bernstein polynomials in the complex plane and applications to movement problems, cf. also [a3].

References

[a1] P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126
[a2] T.J. Rivlin, "An introduction to the approximation of functions" , Dover, reprint (1981)
[a3] G.G. Lorentz, "Bernstein polynomials" , Univ. Toronto Press (1953)
How to Cite This Entry:
Bernstein polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bernstein_polynomials&oldid=46028
This article was adapted from an original article by P.P. Korovkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article