Namespaces
Variants
Actions

Banach limit

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Banach limits originated in [a1], Chapt. II, Sect. 3. Denoting the positive integers by , the set is the real vector space of all bounded sequences of real numbers. For any element , one defines by for all . S. Banach showed that there exists an element in the dual , called , such that

1) for all ;

2) for all non-negative sequences ;

3) for all ;

4) for all convergent sequences . Banach proved the existence of this generalized limit by using the Hahn–Banach theorem. Today (1996), Banach limits are studied via the notion of amenability.

For a semi-group one defines to be the real vector space of all real bounded functions on . For an element one denotes the left (respectively, right) shift by (respectively, ). Thus, for all and for all . An element is called a left- (respectively right-) invariant mean if

1) ;

2) (respectively, ), where, e.g., is the adjoint of . itself is called left (respectively, right) amenable if there exists a left- (respectively, right-) invariant mean in . The existence of Banach limits above is a special case of an invariant mean, where equals the semi-group of natural numbers. Banach also proved that the real numbers are amenable (left and right). M.M. Day has proved that every Abelian semi-group is left and right amenable. On the other hand, , the free group on two generators, is not amenable.

Another approach to amenability is the measure-theoretic point of view. In fact, the prehistory of amenability starts with the following question by H. Lebesgue in the classic "Leçons sur L'Intégration et la Recherche des Fonctions Primitives" ([a5], pp. 114–115): Can countable additivity of the Lebesgue measure be replaced by finite additivity? Banach answered the question in the negative, constructing a finitely additive measure on all subsets of the real numbers, invariant under translation, again using the Hahn–Banach theorem. More generally, if a group is acting on a set , a finitely additive probability measure on the collection of all subsets of , invariant under , is sometimes also called an invariant mean. If is the isometry group of , one can ask for a finitely additive measure invariant under . Such a measure does exist for , but not for . For this leads to so-called paradoxical decompositions or the Banach–Tarski paradox (see Tarski problem; for a survey, see [a8]). For all , the group contains the non-amenable as a subgroup. It has been proved that the Banach–Tarski paradox is effectively (i.e., in ZF set theory) implied by the Hahn–Banach theorem (see [a7]).

For a survey of results of the role of amenability, see [a6] and for a survey of the Hahn–Banach theorem, see [a2]. For the early history of Banach limits and invariant means, including many important results, see [a3] and [a4].

References

[a1] S. Banach, "Théorie des opérations linéaires" , PWN (1932)
[a2] G. Buskes, "The Hahn–Banach theorem surveyed" Dissertationes Mathematicae , CCCXXVII (1993)
[a3] M.M. Day, "Normed linear spaces" , Ergebnisse der Mathematik und ihrer Grenzgebiete , 21 , Springer (1973)
[a4] Greenleaf, F.P, "Invariant means on topological groups and their applications" , v. Nostrand (1969)
[a5] H. Lebesgue, "Oeuvres Scientifiques" , L'Enseign. Math. , II , Inst. Math. Univ. Genæve (1972)
[a6] A.L.T. Paterson, "Amenibility" , Mathematical Surveys and Monographs , 29 , Amer. Math. Soc. (1988)
[a7] J. Pawlikowski, "The Hahn–Banach theorem implies the Banach–Tarski paradox" Fundam. Math. , 138 (1991) pp. 20–22
[a8] S. Wagon, "The Banach–Tarski paradox" , Cambridge Univ. Press (1986)
How to Cite This Entry:
Banach limit. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Banach_limit&oldid=39373
This article was adapted from an original article by G. Buskes (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article