Namespaces
Variants
Actions

Atom

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 03E04 [MSN][ZBL] in set theory

2020 Mathematics Subject Classification: Primary: 28A [MSN][ZBL] in measure theory

Ordered sets

A minimal non-zero element of a partially ordered set with a zero $0$, i.e. a covering element of $0$; an element $p > 0$ such that $0<x\leq p$ implies $x=p$.

Measure algebras

For the definition and relevance in the theory of measure algebras we refer to Measure algebra.

Classical measure theory

Definition

Let $\mu$ be a (nonnegative) measure on a $\sigma$-algebra $\mathcal{S}$ of subsets of a set $X$. An element $a\in \mathcal{S}$ is called an atom of $\mu$ if

  • $\mu (A)>0$;
  • For every $B\in \mathcal{S}$ with $B\subset A$ either $\mu (B)=0$ or $\mu (B)=\mu (A)$

(cp. with Section IV.9.8 of [DS] or [Fe]).

Remark If we denote by $\mathcal{N}$ the null sets and consider the standard quotient measure algebra $(\mathcal{S}/\mathcal{N}, \mu)$, then any atom of such quotient measure algebra corresponds to an equivalence class of atoms of $\mu$.

Atomic measures

A σ-finite measure $\mu$ is called atomic if there is a partition of $X$ into countably many elements of $\mathcal{A}$ which are either atoms or null sets. An atomic probability measure is often called atomic distribution. Examples of atomic distributions are the discrete distributions.

Nonatomic measures

A measure $\mu$ is called nonatomic if it has no atoms.

Jordan decomposition

If $\mu$ is $\sigma$-finite, it is possible to decompose $\mu$ as $\mu_a+\mu_{na}$, where $\mu_a$ is an atomic measure and $\mu_{na}$ is a nonatomic measure. In case $\mu$ is a probability measure, this means that $\mu$ can be written as $p \mu_a + (1-p) \mu_{na}$, where $p\in [0,1]$, $\mu_a$ is an atomic probability measure and $\mu_{na}$ a nonatomic probability measure (see [Fe]), which is sometimes called a continuous distribution. This decomposition is sometimes called Jordan decomposition, although several authors use this name in other contexts, see Jordan decomposition.

Measures in the euclidean space

If $\mu$ is a $\sigma$-finite measure on the Borel $\sigma$-algebra of $\mathbb R^n$, then it is easy to show that, for any atom $B$ of $\mu$ there is a point $x\in B$ with the property that $\mu (B) = \mu (\{x\})$. Thus such a measure is atomic if and only if it is the countable sum of Dirac deltas, i.e. if there is an (at most) countable set $\{x_i\}\subset \mathbb R^n$ and an (at most) countable set $\{\alpha_i\}\subset ]0, \infty[$ with the property that \[ \mu (A) = \sum_{x_i\in A} \alpha_i \qquad \mbox{for every Borel set } A\, . \]

Sierpinski's theorem

A nonatomic measure takes a continuum of values. This is a corollary of the following Theorem due to Sierpinski (see [Si]):

Theorem If $\mu$ is a nonatomic measure on a $\sigma$-algebra $\mathcal{A}$ and $A\in \mathcal{A}$ an element such that $\mu (A)>0$, then for every $b\in [0, \mu (A)]$ there is an element $B\in \mathcal{A}$ with $B\subset A$ and $\mu (B) = b$.

Set theory

In some models of set theory, an atom or urelement is an entity which may be an element of a set, but which itself can have no elements. Zermelo–Fraenkel axiomatic set theory with atoms is denoted ZFA (see [Je]).

Comment

By a natural extension of meaning, the term atom is also used for an object of a category having no subobjects other than itself and the null subobject (cf. Null object of a category).

References

[DS] N. Dunford, J.T. Schwartz, "Linear operators. General theory", 1, Interscience (1958). MR0117523 Zbl 0635.47001
[Fe] "An introduction to probability theory and its applications", 2, Wiley (1971).
[Je] T. Jech, "Set theory. The third millennium edition, revised and expanded" Springer Monographs in Mathematics (2003). ISBN 3-540-44085-2 Zbl 1007.03002
[Lo] M. Loève, "Probability theory", Princeton Univ. Press (1963). MR0203748 Zbl 0108.14202
[Si] W. Sierpiński, "Sur les fonctions d’ensemble additives et continues", 3, Fund. Math. (1922) pp. 240-246 Zbl 48.0279.04
How to Cite This Entry:
Atom. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Atom&oldid=54462
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article