Namespaces
Variants
Actions

Approximate differentiability

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 26B05 Secondary: 28A2049Q15 [MSN][ZBL]

Definition

A generalization of the concept of differentiability obtained by replacing the ordinary limit by an approximate limit. Consider a (Lebesgure) measurable set $E\subset \mathbb R^n$, a measurable map $f:E\to \mathbb R^k$ and a point $x_0\in E$ where $E$ has Lebesgue density $1$. The map $f$ is approximately differentiable at $x_0$ if there is a linear map $A:\mathbb R^n\to \mathbb R^k$ such that \[ {\rm ap}\, \lim_{x\to x_0} \frac{f(x)-f(x_0) - A (x-x_0)}{|x-x_0|} = 0\, , \] (cp. with Section 6.1.3 of [EG] and Section 3.1.2 of [Fe]). $A$ is then called the approximate differential of $f$ at $x_0$. If $n=1$ (i.e. $E$ is a subset of the real line), the map $A$ takes the form $A (t) = a t$: the vector $a$ is then the approximate derivative of $f$ at $x_0$, and it is sometimes denoted by $f'_{ap} (x_0)$.

Properties

If $f$ is approximately differentiable at $x_0$, then it is approximately continuous at $x_0$. The usual rules about uniqueness of the differential, differentiability of sums, products and quotients of functions apply to approximate differentiable functions as well and follow from a useful characterization of approximate differentiability:

Proposition 1 Consider a (Lebesgue) measurable set $E\subset \mathbb R^n$, a measurable map $f:E\to \mathbb R^k$ and a point $x_0\in E$ where $E$ has Lebesgue density $1$. $f$ is approximately differentiable at $x_0$ if and only if there is a measurable set $F\subset E$ which has Lebesgue density $1$ at $x_0$ and such that $f|_F$ is classically differentiable at $x_0$. The approximate differential of $f$ at $x_0$ coincides then with the classical differential of $f|_F$ at $x_0$.

The chain rule applies to compositions $\varphi\circ f$ when $f$ is approximately differentiable at $x_0$ and $\varphi$ is classically differentiable at $f(x_0)$.

Stepanov and Federer's Theorems

The almost everywhere differentiabiliy of a function can be characterized in the following ways.

Theorem 2 (Stepanov) A function $f:E\to\mathbb R^k$ is approximately differentiable almost everywhere if and only if the approximate partial derivatives exist almost everywhere.

For the proof see Section 3.1.4 of [Fe]. A proof for the $2$-dimensional case can also be found in Section 12 of Chapter IX in [Sa]. According to [Sa] the notion of approximate differentiability in $2$ dimensions has been first introduced by Stepanov, who proved the $2$-dimensional case of Theorem 3. In the literature the name Stepanov theorem is usually attributed to another result in the differentiability of functions, see also Rademacher theorem.

Theorem 3 (Federer, Theorem 3.1.6 of [Fe]) Let $E\subset \mathbb R^n$ be a measurable set with finite measure. A function $f:E\to\mathbb R^k$ is approximately differentiable almost everywhere if for every $\varepsilon > 0$ there is a compact set $F\subset E$ such that $\lambda (E\setminus F)<\varepsilon$ and $f|_F$ is $C^1$ (i.e. there exists an extension $g$ of $f|_F$ to $\mathbb R^n$ which is $C^1$).

In the latter theorem it follows also that the classical differential of $f|_F$ coincides with the approximate differential of $f$ at almost every $x_0\in F$.

Notable examples of maps which are almost everywhere approximately differentiable are the ones belonging to the Sobolev classes $W^{1,p}$ and to the BV class (cp. with Theorem 4 of Section 6.1.3 of [EG]).

References

[AFP] L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001
[Br] A.M. Bruckner, "Differentiation of real functions" , Springer (1978) MR0507448 Zbl 0382.26002
[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[Fe] H. Federer, "Geometric measure theory". Volume 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York, 1969. MR0257325 Zbl 0874.49001
[Mu] M.E. Munroe, "Introduction to measure and integration" , Addison-Wesley (1953) MR035237 Zbl 0227.28001
[Sa] S. Saks, "Theory of the integral" , Hafner (1952) MR0167578 Zbl 63.0183.05
[Th] B.S. Thomson, "Real functions" , Springer (1985) MR0818744 Zbl 0581.26001
How to Cite This Entry:
Approximate differentiability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Approximate_differentiability&oldid=32121
This article was adapted from an original article by G.P. Tolstov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article