Namespaces
Variants
Actions

Approximate continuity

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 26B05 Secondary: 28A2049Q15 [MSN][ZBL]

A concept of classical measure theory.

A generalization of the concept of continuity in which the ordinary limit is replaced by an approximate limit. Consider a (Lebesgue) measurable set $E\subset \mathbb R^n$, a measurable function $f: E\to \mathbb R^k$ and a point $x_0\in E$ where the Lebesgue density of $E$ is $1$. $f$ is approximately continuous at $x_0$ if and only if the approximate limit of $f$ at $x_0$ exists and equals $f(x_0)$ (cp. with Section 1.7.2 of [EG]). It follows from Lusin's theorem that a measurable function is approximately continuous at almost every point (see Theorem 3 of Section 1.7.2 of [EG]). The definition of approximate continuity can be extended to nonmeasurable functions (cp. with Approximate limit and see Section 2.9.12 of [Fe]). The almost everywhere approximate continuity becomes then a characterization of measurability (Stepanov–Denjoy theorem, see Theorem 2.9.13 of [Fe]).

Points of approximate continuity are related to Lebesgue points. Recall that a Lebesgue point $x_0$ of a function $f\in L^1 (E)$ is a point of Lebesgue density $1$ for $E$ at which \[ \lim_{r\downarrow 0} \frac{1}{\lambda (B_r (x_0))} \int_{E\cap B_r (x_0)} |f(x)-f(x_0)|\, dx = 0\, , \] where $\lambda$ denotes the Lebesgue measure. In particular a Lebesgue point is always a point of approximate continuity (cp. with Section 1.7.2 of [EG]). Conversely, if $f$ is essentially bounded, the points of approximate continuity of $f$ are also Lebesgue points.

References

[Br] A.M. Bruckner, "Differentiation of real functions" , Springer (1978) MR0507448 Zbl 0382.26002
[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[Fe] H. Federer, "Geometric measure theory". Volume 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York, 1969. MR0257325 Zbl 0874.49001
[Mu] M.E. Munroe, "Introduction to measure and integration" , Addison-Wesley (1953) MR035237 Zbl 0227.28001
[Sa] S. Saks, "Theory of the integral" , Hafner (1952) MR0167578 Zbl 63.0183.05
[Th] B.S. Thomson, "Real functions" , Springer (1985) MR0818744 Zbl 0581.26001
How to Cite This Entry:
Approximate continuity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Approximate_continuity&oldid=27636
This article was adapted from an original article by G.P. Tolstov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article