# Analytic function, element of an

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The collection of domains in the plane of a complex variable and analytic functions given on by a certain analytic apparatus that allows one to effectively realize the analytic continuation of to its whole domain of existence as a complete analytic function. The simplest and most frequently used form of an element of an analytic function is the circular element in the form of a power series (1)

and its disc of convergence with centre at (the centre of the element) and radius of convergence . The analytic continuation here is achieved by a (possibly repeated) re-expansion of the series (1) for various centres , , by formulas like   Any one of the elements of a complete analytic function determines it uniquely and can be represented by means of circular elements with centres . In the case of the centre at infinity, , the circular element takes the form with domain of convergence .

In the process of the analytic continuation, may turn out to be multiple-valued and there may appear corresponding algebraic branch points (cf. Algebraic branch point), that is, branched elements of the form  where ; the number is called the branching order. The branched elements generalize the concept of an element of an analytic function, which in this connection is also called an unramified (for ) regular (for ) element.

As the simplest element of an analytic function of several complex variables , , one can take a multiple power series (2) where is the centre, , , , and is some polydisc in which the series (2) converges absolutely. However, for one has to bear in mind that a polydisc is not the exact domain of absolute convergence of a power series.

The concept of an element of an analytic function is close to that of the germ of an analytic function.

How to Cite This Entry:
Analytic function, element of an. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Analytic_function,_element_of_an&oldid=14787
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article