Namespaces
Variants
Actions

Difference between revisions of "Algebraic systems, variety of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A class of algebraic systems (cf. [[Algebraic systems, class of|Algebraic systems, class of]]) of a fixed signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a0116901.png" />, axiomatizable by identities, i.e. by formulas of the type
+
<!--
 +
a0116901.png
 +
$#A+1 = 115 n = 0
 +
$#C+1 = 115 : ~/encyclopedia/old_files/data/A011/A.0101690 Algebraic systems, variety of
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a0116902.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a0116903.png" /> is some predicate symbol from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a0116904.png" /> or the equality sign, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a0116905.png" /> are terms of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a0116906.png" /> in the object variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a0116907.png" />. A variety of algebraic systems is also known as an equational class, or a primitive class. A variety of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a0116908.png" /> can also be defined (Birkhoff's theorem) as a non-empty class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a0116909.png" />-systems closed with respect to subsystems, homomorphic images and Cartesian products.
+
A class of algebraic systems (cf. [[Algebraic systems, class of|Algebraic systems, class of]]) of a fixed signature  $  \Omega $,
 +
axiomatizable by identities, i.e. by formulas of the type
  
The intersection of all varieties of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169010.png" /> which contain a given (not necessarily abstract) class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169011.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169012.png" />-systems is called the equational closure of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169013.png" /> (or the variety generated by the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169014.png" />), and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169015.png" />. In particular, if the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169016.png" /> consists of a single <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169017.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169018.png" />, its equational closure is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169019.png" />. If the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169020.png" /> is finite, all finitely-generated systems in the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169021.png" /> are also finite [[#References|[1]]], [[#References|[2]]].
+
$$
 +
( \forall x _ {1} ) \dots ( \forall x _ {s} ) P ( f _ {1} \dots f _ {n} ) ,
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169022.png" /> be a class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169023.png" />-systems, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169024.png" /> be the class of subsystems of systems of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169025.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169026.png" /> be the class of homomorphic images of the systems from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169027.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169028.png" /> be the class of isomorphic copies of Cartesian products of the systems of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169029.png" />. The following relation [[#References|[1]]], [[#References|[2]]] is valid for an arbitrary non-empty class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169030.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169031.png" />-systems:
+
where  $  P $
 +
is some predicate symbol from  $  \Omega $
 +
or the equality sign, while  $  f _ {1} \dots f _ {n} $
 +
are terms of the signature  $  \Omega $
 +
in the object variables  $  x _ {1} \dots x _ {s} $.  
 +
A variety of algebraic systems is also known as an equational class, or a primitive class. A variety of signature  $  \Omega $
 +
can also be defined (Birkhoff's theorem) as a non-empty class of $  \Omega $-
 +
systems closed with respect to subsystems, homomorphic images and Cartesian products.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169032.png" /></td> </tr></table>
+
The intersection of all varieties of signature  $  \Omega $
 +
which contain a given (not necessarily abstract) class $  \mathfrak K $
 +
of  $  \Omega $-
 +
systems is called the equational closure of the class  $  \mathfrak K $(
 +
or the variety generated by the class  $  \mathfrak K $),
 +
and is denoted by  $  \mathop{\rm var}  \mathfrak K $.  
 +
In particular, if the class  $  \mathfrak K $
 +
consists of a single  $  \Omega $-
 +
system  $  \mathbf A $,
 +
its equational closure is denoted by  $  \mathop{\rm var}  \mathbf A $.  
 +
If the system  $  \mathbf A $
 +
is finite, all finitely-generated systems in the variety  $  \mathop{\rm var}  \mathbf A $
 +
are also finite [[#References|[1]]], [[#References|[2]]].
  
A variety is said to be trivial if the identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169033.png" /> is true in each one of its systems. Any non-trivial variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169034.png" /> has free systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169035.png" /> of any rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169037.png" /> [[#References|[1]]], [[#References|[2]]].
+
Let  $  {\mathcal L} $
 +
be a class of $  \Omega $-
 +
systems, let  $  S {\mathcal L} $
 +
be the class of subsystems of systems of $  {\mathcal L} $,
 +
let  $  H {\mathcal L} $
 +
be the class of homomorphic images of the systems from  $  {\mathcal L} $,
 +
and let  $  \Pi {\mathcal L} $
 +
be the class of isomorphic copies of Cartesian products of the systems of  $  {\mathcal L} $.  
 +
The following relation [[#References|[1]]], [[#References|[2]]] is valid for an arbitrary non-empty class  $  \mathfrak K $
 +
of  $  \Omega $-
 +
systems:
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169038.png" /> be a set of identities of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169039.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169040.png" /> be the class of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169041.png" />-systems in which all the identities of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169042.png" /> are true. If the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169043.png" /> is satisfied for a variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169044.png" /> of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169046.png" /> is known as a basis for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169047.png" />. A variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169048.png" /> is known as finitely baseable if it has a finite basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169049.png" />. For any system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169050.png" />, a basis of the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169051.png" /> is also known as a basis of identities of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169052.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169053.png" /> is a finitely-baseable variety of algebras of a finite signature and if all algebras of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169054.png" /> have distributive congruence lattices, then each finite algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169055.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169056.png" /> has a finite basis of identities [[#References|[10]]]. In particular, any finite lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169057.png" /> has a finite basis of identities. Any finite group has a finite basis of identities [[#References|[3]]]. On the other hand, there exists a six-element semi-group [[#References|[5]]] and a three-element groupoid [[#References|[6]]] without a finite basis of identities.
+
$$
 +
\mathop{\rm var}  \mathfrak K  = H S  \Pi \mathfrak K .
 +
$$
  
The varieties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169058.png" />-systems contained in some fixed variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169059.png" /> of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169060.png" /> constitute under inclusion a complete lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169061.png" /> with a zero and a unit, known as the lattice of subvarieties of the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169062.png" />. The zero of this lattice is the variety with the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169064.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169065.png" />), while its unit is the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169066.png" />. If the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169067.png" /> is non-trivial, the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169068.png" /> is anti-isomorphic to the lattice of all fully-characteristic congruences (cf. [[Fully-characteristic congruence|Fully-characteristic congruence]]) of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169069.png" /> of countable rank which is free in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169070.png" /> [[#References|[1]]]. The lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169071.png" /> of all varieties of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169072.png" /> is infinite, except for the case when the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169073.png" /> is finite and consists of predicate symbols only. The exact value of the cardinality of the infinite lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169074.png" /> is known [[#References|[1]]]. The lattice of all lattice varieties is distributive and has the cardinality of the continuum [[#References|[7]]], [[#References|[8]]]. The lattice of all group varieties is modular, but it is not distributive [[#References|[3]]], [[#References|[4]]]. The lattice of varieties of commutative semi-groups is not modular [[#References|[9]]].
+
A variety is said to be trivial if the identity  $  x = y $
 +
is true in each one of its systems. Any non-trivial variety  $  \mathfrak M $
 +
has free systems  $  F _ {m} ( \mathfrak M ) $
 +
of any rank $  m $
 +
and $  \mathfrak M = \mathop{\rm var}  F _ {\aleph _ {0}  } ( \mathfrak M ) $[[#References|[1]]], [[#References|[2]]].
  
Atoms of the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169075.png" /> of all varieties of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169076.png" /> are known as minimal varieties of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169077.png" />. Every variety with a non-unit system contains at least one minimal variety. If the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169078.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169079.png" /> is finite and of finite type, then the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169080.png" /> contains only a finite number of minimal subvarieties [[#References|[1]]].
+
Let  $  S $
 +
be a set of identities of the signature  $  \Omega $
 +
and let  $  KS $
 +
be the class of all  $  \Omega $-
 +
systems in which all the identities of $  S $
 +
are true. If the equality  $  \mathfrak M = KS $
 +
is satisfied for a variety  $  \mathfrak M $
 +
of signature $  \Omega $,
 +
$  S $
 +
is known as a basis for  $  \mathfrak M $.  
 +
A variety  $  \mathfrak M $
 +
is known as finitely baseable if it has a finite basis  $  S $.  
 +
For any system  $  \mathbf A $,
 +
a basis of the variety $  \mathop{\rm var}  \mathbf A $
 +
is also known as a basis of identities of the system $  \mathbf A $.  
 +
If $  \mathfrak M $
 +
is a finitely-baseable variety of algebras of a finite signature and if all algebras of $  \mathfrak M $
 +
have distributive congruence lattices, then each finite algebra  $  \mathbf A $
 +
of  $  \mathfrak M $
 +
has a finite basis of identities [[#References|[10]]]. In particular, any finite lattice  $  \langle  \mathbf A , \lor, \wedge \rangle $
 +
has a finite basis of identities. Any finite group has a finite basis of identities [[#References|[3]]]. On the other hand, there exists a six-element semi-group [[#References|[5]]] and a three-element groupoid [[#References|[6]]] without a finite basis of identities.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169081.png" /> be subvarieties of a fixed variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169082.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169083.png" />-systems. The Mal'tsev product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169084.png" /> denotes the class of those systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169085.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169086.png" /> with a congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169087.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169088.png" />, and all cosets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169089.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169090.png" />), which are systems in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169091.png" />, belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169092.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169093.png" /> is the variety of all groups and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169094.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169095.png" /> are subvarieties of it, then the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169096.png" /> is identical with the Neumann product [[#References|[3]]]. The product of varieties of semi-groups need not be a variety. A variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169097.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169098.png" />-systems is called polarized if there exists a term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a01169099.png" /> of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690100.png" /> such that in each system from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690101.png" /> the identities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690103.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690104.png" />) are true. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690105.png" /> is a polarized variety of algebras and the congruences in all algebras in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690106.png" /> are commutable, then the Mal'tsev product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690107.png" /> of any subvarieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690108.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690109.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690110.png" /> is a variety. One may speak, in particular, of the groupoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690111.png" /> of subvarieties of an arbitrary variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690112.png" /> of groups, rings, etc. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690113.png" /> is the variety of all groups or all Lie algebras over a fixed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690114.png" /> of characteristic zero, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011690/a011690115.png" /> is a free semi-group [[#References|[1]]].
+
The varieties of  $  \Omega $-
 +
systems contained in some fixed variety  $  \mathfrak M $
 +
of signature  $  \Omega $
 +
constitute under inclusion a complete lattice  $  L ( \mathfrak M ) $
 +
with a zero and a unit, known as the lattice of subvarieties of the variety  $  \mathfrak M $.
 +
The zero of this lattice is the variety with the basis  $  x = y $,
 +
$  P ( x _ {1} \dots x _ {n} ) $(
 +
$  P \in \Omega $),
 +
while its unit is the variety  $  \mathfrak M $.
 +
If the variety  $  \mathfrak M $
 +
is non-trivial, the lattice  $  L ( \mathfrak M ) $
 +
is anti-isomorphic to the lattice of all fully-characteristic congruences (cf. [[Fully-characteristic congruence|Fully-characteristic congruence]]) of the system  $  F _ {\aleph _ {0}  } ( \mathfrak M ) $
 +
of countable rank which is free in  $  \mathfrak M $[[#References|[1]]]. The lattice  $  L _  \Omega  $
 +
of all varieties of signature  $  \Omega $
 +
is infinite, except for the case when the set  $  \Omega $
 +
is finite and consists of predicate symbols only. The exact value of the cardinality of the infinite lattice  $  L _  \Omega  $
 +
is known [[#References|[1]]]. The lattice of all lattice varieties is distributive and has the cardinality of the continuum [[#References|[7]]], [[#References|[8]]]. The lattice of all group varieties is modular, but it is not distributive [[#References|[3]]], [[#References|[4]]]. The lattice of varieties of commutative semi-groups is not modular [[#References|[9]]].
 +
 
 +
Atoms of the lattice  $  L _  \Omega  $
 +
of all varieties of signature  $  \Omega $
 +
are known as minimal varieties of signature  $  \Omega $.  
 +
Every variety with a non-unit system contains at least one minimal variety. If the  $  \Omega $-
 +
system  $  \mathbf A $
 +
is finite and of finite type, then the variety  $  \mathop{\rm var}  \mathbf A $
 +
contains only a finite number of minimal subvarieties [[#References|[1]]].
 +
 
 +
Let  $  \mathfrak A , \mathfrak B $
 +
be subvarieties of a fixed variety  $  \mathfrak M $
 +
of  $  \Omega $-
 +
systems. The Mal'tsev product $  \mathfrak A _ {\mathfrak M} \circ \mathfrak B $
 +
denotes the class of those systems $  \mathbf A $
 +
of $  \mathfrak M $
 +
with a congruence $  \theta $
 +
such that $  ( \mathbf A / \theta ) \in \mathfrak B $,  
 +
and all cosets a / \theta $(
 +
a \in \mathbf A $),  
 +
which are systems in $  \mathfrak M $,  
 +
belong to $  \mathfrak A $.  
 +
If $  \mathfrak M $
 +
is the variety of all groups and if $  \mathfrak A $
 +
and $  \mathfrak B $
 +
are subvarieties of it, then the product $  \mathfrak A _ {\mathfrak M} \circ \mathfrak B $
 +
is identical with the Neumann product [[#References|[3]]]. The product of varieties of semi-groups need not be a variety. A variety $  \mathfrak M $
 +
of $  \Omega $-
 +
systems is called polarized if there exists a term $  e (x) $
 +
of the signature $  \Omega $
 +
such that in each system from $  \mathfrak M $
 +
the identities $  e(x) = e(y) $,  
 +
$  F(e(x) \dots e(x)) = e (x) $(
 +
$  F \in \Omega $)  
 +
are true. If $  \mathfrak M $
 +
is a polarized variety of algebras and the congruences in all algebras in $  \mathfrak M $
 +
are commutable, then the Mal'tsev product $  \mathfrak A _ {\mathfrak M} \circ \mathfrak B $
 +
of any subvarieties $  \mathfrak A $
 +
and $  \mathfrak B $
 +
in $  \mathfrak M $
 +
is a variety. One may speak, in particular, of the groupoid $  G _ {I} ( \mathfrak M ) $
 +
of subvarieties of an arbitrary variety $  \mathfrak M $
 +
of groups, rings, etc. If $  \mathfrak M $
 +
is the variety of all groups or all Lie algebras over a fixed field $  P $
 +
of characteristic zero, then $  G _ {I} ( \mathfrak M ) $
 +
is a free semi-group [[#References|[1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.M. Cohn,  "Universal algebra" , Reidel  (1981)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  H. Neumann,  "Varieties of groups" , Springer  (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  G. Birkhoff,  "Lattice theory" , ''Colloq. Publ.'' , '''25''' , Amer. Math. Soc.  (1973)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P. Perkins,  "Bases of equational theories of semigroups"  ''J. of Algebra'' , '''11''' :  2  (1968)  pp. 298–314</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  V.L. Murskii,  "The existence in three-valued logic of a closed class with finite basis, not having a finite system of identities"  ''Soviet Math. Dokl.'' , '''6''' :  4  (1965)  pp. 1020–1024  ''Dokl. Akad. Nauk SSSR'' , '''163''' :  4  (1965)  pp. 815–818</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  B. Jónsson,  "Algebras whose congruence lattices are distributive"  ''Math. Scand.'' , '''21'''  (1967)  pp. 110–121</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  K.A. Baker,  "Equational classes of modular lattices"  ''Pacific J. Math.'' , '''28'''  (1969)  pp. 9–15</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  R. Schwabauer,  "A note on commutative semi-groups"  ''Proc. Amer. Math. Soc.'' , '''20'''  (1969)  pp. 503–504</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  K.A. Baker,  "Primitive satisfaction and equational problems for lattices and other algebras"  ''Trans. Amer. Math. Soc.'' , '''190'''  (1974)  pp. 125–150</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.M. Cohn,  "Universal algebra" , Reidel  (1981)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  H. Neumann,  "Varieties of groups" , Springer  (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  G. Birkhoff,  "Lattice theory" , ''Colloq. Publ.'' , '''25''' , Amer. Math. Soc.  (1973)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P. Perkins,  "Bases of equational theories of semigroups"  ''J. of Algebra'' , '''11''' :  2  (1968)  pp. 298–314</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  V.L. Murskii,  "The existence in three-valued logic of a closed class with finite basis, not having a finite system of identities"  ''Soviet Math. Dokl.'' , '''6''' :  4  (1965)  pp. 1020–1024  ''Dokl. Akad. Nauk SSSR'' , '''163''' :  4  (1965)  pp. 815–818</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  B. Jónsson,  "Algebras whose congruence lattices are distributive"  ''Math. Scand.'' , '''21'''  (1967)  pp. 110–121</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  K.A. Baker,  "Equational classes of modular lattices"  ''Pacific J. Math.'' , '''28'''  (1969)  pp. 9–15</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  R. Schwabauer,  "A note on commutative semi-groups"  ''Proc. Amer. Math. Soc.'' , '''20'''  (1969)  pp. 503–504</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  K.A. Baker,  "Primitive satisfaction and equational problems for lattices and other algebras"  ''Trans. Amer. Math. Soc.'' , '''190'''  (1974)  pp. 125–150</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 16:10, 1 April 2020


A class of algebraic systems (cf. Algebraic systems, class of) of a fixed signature $ \Omega $, axiomatizable by identities, i.e. by formulas of the type

$$ ( \forall x _ {1} ) \dots ( \forall x _ {s} ) P ( f _ {1} \dots f _ {n} ) , $$

where $ P $ is some predicate symbol from $ \Omega $ or the equality sign, while $ f _ {1} \dots f _ {n} $ are terms of the signature $ \Omega $ in the object variables $ x _ {1} \dots x _ {s} $. A variety of algebraic systems is also known as an equational class, or a primitive class. A variety of signature $ \Omega $ can also be defined (Birkhoff's theorem) as a non-empty class of $ \Omega $- systems closed with respect to subsystems, homomorphic images and Cartesian products.

The intersection of all varieties of signature $ \Omega $ which contain a given (not necessarily abstract) class $ \mathfrak K $ of $ \Omega $- systems is called the equational closure of the class $ \mathfrak K $( or the variety generated by the class $ \mathfrak K $), and is denoted by $ \mathop{\rm var} \mathfrak K $. In particular, if the class $ \mathfrak K $ consists of a single $ \Omega $- system $ \mathbf A $, its equational closure is denoted by $ \mathop{\rm var} \mathbf A $. If the system $ \mathbf A $ is finite, all finitely-generated systems in the variety $ \mathop{\rm var} \mathbf A $ are also finite [1], [2].

Let $ {\mathcal L} $ be a class of $ \Omega $- systems, let $ S {\mathcal L} $ be the class of subsystems of systems of $ {\mathcal L} $, let $ H {\mathcal L} $ be the class of homomorphic images of the systems from $ {\mathcal L} $, and let $ \Pi {\mathcal L} $ be the class of isomorphic copies of Cartesian products of the systems of $ {\mathcal L} $. The following relation [1], [2] is valid for an arbitrary non-empty class $ \mathfrak K $ of $ \Omega $- systems:

$$ \mathop{\rm var} \mathfrak K = H S \Pi \mathfrak K . $$

A variety is said to be trivial if the identity $ x = y $ is true in each one of its systems. Any non-trivial variety $ \mathfrak M $ has free systems $ F _ {m} ( \mathfrak M ) $ of any rank $ m $ and $ \mathfrak M = \mathop{\rm var} F _ {\aleph _ {0} } ( \mathfrak M ) $[1], [2].

Let $ S $ be a set of identities of the signature $ \Omega $ and let $ KS $ be the class of all $ \Omega $- systems in which all the identities of $ S $ are true. If the equality $ \mathfrak M = KS $ is satisfied for a variety $ \mathfrak M $ of signature $ \Omega $, $ S $ is known as a basis for $ \mathfrak M $. A variety $ \mathfrak M $ is known as finitely baseable if it has a finite basis $ S $. For any system $ \mathbf A $, a basis of the variety $ \mathop{\rm var} \mathbf A $ is also known as a basis of identities of the system $ \mathbf A $. If $ \mathfrak M $ is a finitely-baseable variety of algebras of a finite signature and if all algebras of $ \mathfrak M $ have distributive congruence lattices, then each finite algebra $ \mathbf A $ of $ \mathfrak M $ has a finite basis of identities [10]. In particular, any finite lattice $ \langle \mathbf A , \lor, \wedge \rangle $ has a finite basis of identities. Any finite group has a finite basis of identities [3]. On the other hand, there exists a six-element semi-group [5] and a three-element groupoid [6] without a finite basis of identities.

The varieties of $ \Omega $- systems contained in some fixed variety $ \mathfrak M $ of signature $ \Omega $ constitute under inclusion a complete lattice $ L ( \mathfrak M ) $ with a zero and a unit, known as the lattice of subvarieties of the variety $ \mathfrak M $. The zero of this lattice is the variety with the basis $ x = y $, $ P ( x _ {1} \dots x _ {n} ) $( $ P \in \Omega $), while its unit is the variety $ \mathfrak M $. If the variety $ \mathfrak M $ is non-trivial, the lattice $ L ( \mathfrak M ) $ is anti-isomorphic to the lattice of all fully-characteristic congruences (cf. Fully-characteristic congruence) of the system $ F _ {\aleph _ {0} } ( \mathfrak M ) $ of countable rank which is free in $ \mathfrak M $[1]. The lattice $ L _ \Omega $ of all varieties of signature $ \Omega $ is infinite, except for the case when the set $ \Omega $ is finite and consists of predicate symbols only. The exact value of the cardinality of the infinite lattice $ L _ \Omega $ is known [1]. The lattice of all lattice varieties is distributive and has the cardinality of the continuum [7], [8]. The lattice of all group varieties is modular, but it is not distributive [3], [4]. The lattice of varieties of commutative semi-groups is not modular [9].

Atoms of the lattice $ L _ \Omega $ of all varieties of signature $ \Omega $ are known as minimal varieties of signature $ \Omega $. Every variety with a non-unit system contains at least one minimal variety. If the $ \Omega $- system $ \mathbf A $ is finite and of finite type, then the variety $ \mathop{\rm var} \mathbf A $ contains only a finite number of minimal subvarieties [1].

Let $ \mathfrak A , \mathfrak B $ be subvarieties of a fixed variety $ \mathfrak M $ of $ \Omega $- systems. The Mal'tsev product $ \mathfrak A _ {\mathfrak M} \circ \mathfrak B $ denotes the class of those systems $ \mathbf A $ of $ \mathfrak M $ with a congruence $ \theta $ such that $ ( \mathbf A / \theta ) \in \mathfrak B $, and all cosets $ a / \theta $( $ a \in \mathbf A $), which are systems in $ \mathfrak M $, belong to $ \mathfrak A $. If $ \mathfrak M $ is the variety of all groups and if $ \mathfrak A $ and $ \mathfrak B $ are subvarieties of it, then the product $ \mathfrak A _ {\mathfrak M} \circ \mathfrak B $ is identical with the Neumann product [3]. The product of varieties of semi-groups need not be a variety. A variety $ \mathfrak M $ of $ \Omega $- systems is called polarized if there exists a term $ e (x) $ of the signature $ \Omega $ such that in each system from $ \mathfrak M $ the identities $ e(x) = e(y) $, $ F(e(x) \dots e(x)) = e (x) $( $ F \in \Omega $) are true. If $ \mathfrak M $ is a polarized variety of algebras and the congruences in all algebras in $ \mathfrak M $ are commutable, then the Mal'tsev product $ \mathfrak A _ {\mathfrak M} \circ \mathfrak B $ of any subvarieties $ \mathfrak A $ and $ \mathfrak B $ in $ \mathfrak M $ is a variety. One may speak, in particular, of the groupoid $ G _ {I} ( \mathfrak M ) $ of subvarieties of an arbitrary variety $ \mathfrak M $ of groups, rings, etc. If $ \mathfrak M $ is the variety of all groups or all Lie algebras over a fixed field $ P $ of characteristic zero, then $ G _ {I} ( \mathfrak M ) $ is a free semi-group [1].

References

[1] A.I. Mal'tsev, "Algebraic systems" , Springer (1973) (Translated from Russian)
[2] P.M. Cohn, "Universal algebra" , Reidel (1981)
[3] H. Neumann, "Varieties of groups" , Springer (1967)
[4] G. Birkhoff, "Lattice theory" , Colloq. Publ. , 25 , Amer. Math. Soc. (1973)
[5] P. Perkins, "Bases of equational theories of semigroups" J. of Algebra , 11 : 2 (1968) pp. 298–314
[6] V.L. Murskii, "The existence in three-valued logic of a closed class with finite basis, not having a finite system of identities" Soviet Math. Dokl. , 6 : 4 (1965) pp. 1020–1024 Dokl. Akad. Nauk SSSR , 163 : 4 (1965) pp. 815–818
[7] B. Jónsson, "Algebras whose congruence lattices are distributive" Math. Scand. , 21 (1967) pp. 110–121
[8] K.A. Baker, "Equational classes of modular lattices" Pacific J. Math. , 28 (1969) pp. 9–15
[9] R. Schwabauer, "A note on commutative semi-groups" Proc. Amer. Math. Soc. , 20 (1969) pp. 503–504
[10] K.A. Baker, "Primitive satisfaction and equational problems for lattices and other algebras" Trans. Amer. Math. Soc. , 190 (1974) pp. 125–150

Comments

A categorical characterization of varieties of algebraic systems was introduced by F.W. Lawvere [a1]; for a detailed account of this approach see [a2].

References

[a1] F.W. Lawvere, "Functional semantics of algebraic theories" Proc. Nat. Acad. Sci. USA , 50 (1963) pp. 869–873
[a2] E.G. Manes, "Algebraic theories" , Springer (1976)
How to Cite This Entry:
Algebraic systems, variety of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Algebraic_systems,_variety_of&oldid=17213
This article was adapted from an original article by D.M. Smirnov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article