Namespaces
Variants
Actions

Algebra of sets

From Encyclopedia of Mathematics
Revision as of 16:26, 31 July 2012 by Jjg (talk | contribs) (→‎References: removed spaces between words and commas)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 03A15 Secondary: 28A33 [MSN][ZBL]

Algebra of sets

A collection $\mathcal{A}$ of subsets of some set $X$ which contains the empty set and is closed under the set-theoretic operations of union, intersection and taking complements, i.e. such that

  • $A\in\mathcal{A}\Rightarrow X\setminus A\in \mathcal{A}$;
  • $A,B\in \mathcal{A}\Rightarrow A\cup B\in\mathcal{A}$;
  • $A,B\in \mathcal{A}\Rightarrow A\cap B\in\mathcal{A}$.

Indeed it is sufficient to assume that $\mathcal{A}$ satisfies the first two properties to conclude that also the third holds.

The algebra generated by a family $\mathcal{B}$ of subsets of $X$ is defined as the smallest algebra $\mathcal{A}$ of subsets of $X$ containing $\mathcal{B}$. A simple inductive procedure allows to "construct" $\mathcal{A}$ as follows. $\mathcal{A}_0$ consists of all elements of $\mathcal{B}$ and their complements. For any $n\in\mathbb N\setminus \{0\}$ we define $\mathcal{A}_n$ as the collection of those sets which are finite unions or finite intersections of elements of $\mathcal{A}_{n-1}$. Then $\mathcal{A}=\bigcup_{n\in\mathbb N} \mathcal{A}_n$.

$\sigma$-Algebra

An algebra of sets that is also closed under countable unions. As a corollary a $\sigma$-algebra is also closed under countable intersections. As above, given a collection $\mathcal{B}$ of subsets of $X$, the $\sigma$-algebra generated by $\mathcal{B}$ is defined as the smallest $\sigma$-algebra of subsets of $X$ containing $\mathcal{B}$. The explicit construction given above for the algebra generated by $\mathcal{B}$ can be extended to $\sigma$-algebras with the aid of transfinite numbers. As above, $\mathcal{A}_0$consists of all elements of $\mathcal{B}$ and their complements. Given a countable ordinal $\alpha$, $\mathcal{A}_\alpha$ consists of those sets which are countable unions or countable intersections of elements belonging to \[ \bigcup_{\beta<\alpha} \mathcal{A}_\beta\, . \] $\mathcal{A}$ is the union of the classes $\mathcal{A}_\alpha$ where the index $\alpha$ runs over all countable ordinals.

Relations to measure theory

Algebras (respectively $\sigma$-algebras) are the natural domain of definition of finitely-additive ($\sigma$-additive) measures. Therefore $\sigma$-algebras play a central role in measure theory, see for instance Measure space.

According to the theorem of extension of measures, any $\sigma$-finite, $\sigma$-additive measure, defined on an algebra A, can be uniquely extended to a $\sigma$-additive measure defined on the $\sigma$-algebra generated by $A$.

Examples.

1) Let $X$ be an arbitrary set. The collection of finite subsets of $X$ and their complements is an algebra of sets (so-called finite-cofinite algebra). The collection of subsets of $X$ which are at most countable and of their complements is a $\sigma$-algebra (so-called countable-cocountable σ-algebra).

2) The collection of finite unions of intervals of the type \[ \{x\in\mathbb R : a\leq x <b\} \qquad \mbox{where '"`UNIQ-MathJax50-QINU`"'} \] is an algebra.

3) If $X$ is a topological space, the elements of the $\sigma$-algebra generated by the open sets are called Borel sets.

4) The Lebesgue measurable sets of $\mathbb R^k$ form a $\sigma$ algebra (so-called Lebesgue σ-algebra, see Lebesgue measure).

5) Let $T$ be an arbitrary set and consider $X = \mathbb R^T$ (i.e. the set of all real-valued functions on $\mathbb R$). Let $A$ be the class of sets of the type \[ \{\omega\in \mathbb R^T: (\omega (t_1), \ldots,\omega t_k)\in E\} \] where $k$ is an arbitrary natural number, $E$ an arbitrary Borel subset of $\mathbb R^k$ and $t_1,\ldots, t_k$ an arbitrary collection of distinct elements of $T$. $A$ is an algebra of subsets of $\mathbb R^T$ (so-called cylindrical algebra). In the theory of random processes a probability measure is often originally defined only on an algebra of this type, and then subsequently extended to the $\sigma$-algebra generated by $A$.

References

[Bo] N. Bourbaki, "Elements of mathematics. Integration", Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001
[DS] N. Dunford, J.T. Schwartz, "Linear operators. General theory", 1, Interscience (1958) MR0117523
[Ha] P.R. Halmos, "Measure theory", v. Nostrand (1950) MR0033869 Zbl 0040.16802
[Ne] J. Neveu, "Bases mathématiques du calcul des probabilités", Masson (1970)
How to Cite This Entry:
Algebra of sets. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Algebra_of_sets&oldid=27296
This article was adapted from an original article by V.V. Sazonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article