Namespaces
Variants
Actions

Difference between revisions of "Airy equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(→‎References: + ZBL link)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The second-order linear ordinary differential equation
+
{{MSC|33C10}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a0112001.png" /></td> </tr></table>
+
The Airy equation is the second-order linear ordinary differential equation
 
+
\[
It occurred first in G.B. Airy's research in optics [[#References|[1]]]. Its general solution can be expressed in terms of [[Bessel functions|Bessel functions]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a0112002.png" />:
+
y'' - xy = 0.
 
+
\]
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a0112003.png" /></td> </tr></table>
+
It occurred first in G.B. Airy's research in optics {{Cite|Ai}}. Its general solution can be expressed in terms of [[Bessel functions|Bessel functions]] of order $\pm 1/3$:
 
+
\[
Since the Airy equation plays an important role in various problems of physics, mechanics and asymptotic analysis, its solutions are regarded as forming a distinct class of special functions (see [[Airy functions|Airy functions]]).
+
y(x) =  
 
+
c_1 \sqrt{x} J_{1/3}\left(\frac{2}{3}\mathrm{i}x^{3/2}\right) +
The solutions of the Airy equation in the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a0112004.png" />,
+
c_2 \sqrt{x} J_{-1/3}\left(\frac{2}{3}\mathrm{i}x^{3/2}\right).
 
+
\]
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a0112005.png" /></td> </tr></table>
+
Since the Airy equation plays an important role in various problems of physics, mechanics and asymptotic analysis, its solutions are regarded as forming a distinct class of special functions (see [[Airy     functions|Airy functions]]).
  
 +
The solutions of the Airy equation in the complex plane $z$,
 +
\[
 +
w'' - zw = 0,
 +
\]
 
have the following fundamental properties:
 
have the following fundamental properties:
  
1) Every solution is an entire function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a0112006.png" /> and can be expanded in a power series
+
1) Every solution is an entire function of $z$ and can be expanded in a power series
 
+
\[
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a0112007.png" /></td> </tr></table>
+
w(z) =  
 
+
w(0)
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a0112008.png" /></td> </tr></table>
+
\left(
 +
1 + \frac{z^3}{2 \cdot 3} + \frac{z^6}{(2\cdot 3) \cdot(5 \cdot 6)} + \cdots
 +
\right)
 +
+
 +
w'(0)
 +
\left(
 +
z + \frac{z^4}{3 \cdot 4} + \frac{z^7}{(3 \cdot 4) \cdot(6 \cdot7)} + \cdots
 +
\right),
 +
\]
 +
which converges for all $z$.
  
which converges for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a0112009.png" />.
+
2) If $w(z) \not\equiv 0$ is a solution of the Airy equation, then so are $w(\omega z)$ and $w(\omega^2 z)$, where $w=\mathrm{e}^{2\pi\mathrm{i}/3}$, and any two of these solutions are linearly independent. The following identity holds:
 +
\[
 +
w(z) + w(\omega z) + w(\omega^2 z) \equiv 0.
 +
\]
  
2) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a01120010.png" /> is a solution of the Airy equation, then so are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a01120011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a01120012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a01120013.png" />, and any two of these solutions are linearly independent. The following identity holds:
+
====References====  
 +
- {{Ref|AbSt}} M. Abramowitz (ed.)  I.A. Stegun (ed.), ''Handbook of mathematical functions'', ''Appl. Math. Series'', '''55''', Nat. Bureau of Standards,, U.S. Department Commerce (1964)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011200/a01120014.png" /></td> </tr></table>
+
- {{Ref|Ai}} G.B. Airy, "On the intensity of light in the neighbourhood of a caustic" ''Trans. Cambridge Philos. Soc.'', '''6''' (1838) pp. 379–402
  
====References====
+
- {{Ref|BaBu}} V.M. Babich, V.S. Buldyrev, "Asymptotic methods in the diffraction of short waves", Moscow (1972) {{ZBL|0255.35002}} (In Russian) (Translation: "Short-Wavelength Diffraction Theory. Asymptotic Methods", Springer, 1991 {{ZBL|0742.35002}})
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.B. Airy,  "On the intensity of light in the neighbourhood of a caustic"  ''Trans. Cambridge Philos. Soc.'' , '''6'''  (1838)  pp. 379–402</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.M. Babich,   V.S. Buldyrev,   "Asymptotic methods in the diffraction of short waves" , Moscow (1972) (In Russian) (Translation forthcoming: Springer)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Abramowitz (ed.)  I.A. Stegun (ed.) , ''Handbook of mathematical functions'' , ''Appl. Math. Series'' , '''55''' , Nat. Bureau of Standards,, U.S. Department Commerce  (1964)</TD></TR></table>
 

Latest revision as of 12:51, 23 February 2024

2020 Mathematics Subject Classification: Primary: 33C10 [MSN][ZBL]

The Airy equation is the second-order linear ordinary differential equation \[ y'' - xy = 0. \] It occurred first in G.B. Airy's research in optics [Ai]. Its general solution can be expressed in terms of Bessel functions of order $\pm 1/3$: \[ y(x) = c_1 \sqrt{x} J_{1/3}\left(\frac{2}{3}\mathrm{i}x^{3/2}\right) + c_2 \sqrt{x} J_{-1/3}\left(\frac{2}{3}\mathrm{i}x^{3/2}\right). \] Since the Airy equation plays an important role in various problems of physics, mechanics and asymptotic analysis, its solutions are regarded as forming a distinct class of special functions (see Airy functions).

The solutions of the Airy equation in the complex plane $z$, \[ w'' - zw = 0, \] have the following fundamental properties:

1) Every solution is an entire function of $z$ and can be expanded in a power series \[ w(z) = w(0) \left( 1 + \frac{z^3}{2 \cdot 3} + \frac{z^6}{(2\cdot 3) \cdot(5 \cdot 6)} + \cdots \right) + w'(0) \left( z + \frac{z^4}{3 \cdot 4} + \frac{z^7}{(3 \cdot 4) \cdot(6 \cdot7)} + \cdots \right), \] which converges for all $z$.

2) If $w(z) \not\equiv 0$ is a solution of the Airy equation, then so are $w(\omega z)$ and $w(\omega^2 z)$, where $w=\mathrm{e}^{2\pi\mathrm{i}/3}$, and any two of these solutions are linearly independent. The following identity holds: \[ w(z) + w(\omega z) + w(\omega^2 z) \equiv 0. \]

References

- [AbSt] M. Abramowitz (ed.) I.A. Stegun (ed.), Handbook of mathematical functions, Appl. Math. Series, 55, Nat. Bureau of Standards,, U.S. Department Commerce (1964)

- [Ai] G.B. Airy, "On the intensity of light in the neighbourhood of a caustic" Trans. Cambridge Philos. Soc., 6 (1838) pp. 379–402

- [BaBu] V.M. Babich, V.S. Buldyrev, "Asymptotic methods in the diffraction of short waves", Moscow (1972) Zbl 0255.35002 (In Russian) (Translation: "Short-Wavelength Diffraction Theory. Asymptotic Methods", Springer, 1991 Zbl 0742.35002)

How to Cite This Entry:
Airy equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Airy_equation&oldid=15069
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article