Namespaces
Variants
Actions

Difference between revisions of "Abelian difference set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
(One intermediate revision by one other user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100201.png" /> be a [[Group|group]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100202.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100203.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100204.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100205.png" /> is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100207.png" />-difference set of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100208.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100209.png" /> if every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002010.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002011.png" /> has exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002012.png" /> different representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002013.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002014.png" />, see [[#References|[a1]]]. For instance, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002015.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002016.png" />-difference set in the [[Cyclic group|cyclic group]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002017.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002018.png" /> is Abelian (cyclic, non-Abelian), the difference set is called Abelian (cyclic, non-Abelian). Two difference sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002020.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002021.png" /> are equivalent if there is a group [[Automorphism|automorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002022.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002023.png" />. The existence of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002024.png" />-difference set is equivalent to the existence of a symmetric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002025.png" />-design with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002026.png" /> acting as a regular automorphism group (cf. also [[Difference set|Difference set]]). If two difference sets correspond to isomorphic designs, the difference sets are called isomorphic. Given certain parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002029.png" /> and a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002030.png" />, the problem is to construct a difference set with those parameters or prove non-existence. To prove non-existence of Abelian difference sets, results from [[Algebraic number theory|algebraic number theory]] are required: The existence of the difference set implies the existence of an algebraic integer of absolute value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002031.png" /> in some [[Cyclotomic field|cyclotomic field]]. In several cases one can prove that no such element exists, see [[#References|[a5]]]. Another approach for non-existence results uses multipliers: A multiplier of an Abelian difference set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002032.png" /> is an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002033.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002034.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002035.png" />. A statement that certain group automorphisms have to be multipliers of putative difference sets is called a multiplier theorem. It is known, for instance, that the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002036.png" /> is a multiplier of an Abelian difference set provided that: i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002037.png" /> divides the order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002038.png" />; ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002039.png" /> is relatively prime to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002040.png" />; and iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002041.png" />. Several generalizations of this theorem are known, see [[#References|[a1]]].
+
<!--
 +
a1100201.png
 +
$#A+1 = 60 n = 1
 +
$#C+1 = 60 : ~/encyclopedia/old_files/data/A110/A.1100020 Abelian difference set
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
Let  $  G $
 +
be a [[Group|group]] of order $  v $
 +
and $  D \subseteq G $
 +
with $  | D | = k $.  
 +
Then $  D $
 +
is called a $  ( v,k, \lambda ) $-
 +
difference set of order $  n = k - \lambda $
 +
in $  G $
 +
if every element $  g \neq 1 $
 +
in $  G $
 +
has exactly $  \lambda $
 +
different representations $  g = d \cdot d ^ {\prime - 1 } $
 +
with $  d,d  ^  \prime  \in D $,  
 +
see [[#References|[a1]]]. For instance, $  \{ 1,2,4 \} $
 +
is a $  ( 7,3,1 ) $-
 +
difference set in the [[Cyclic group|cyclic group]] of order $  7 $.  
 +
If $  G $
 +
is Abelian (cyclic, non-Abelian), the difference set is called Abelian (cyclic, non-Abelian). Two difference sets $  D _ {1} $
 +
and $  D _ {2} $
 +
in $  G $
 +
are equivalent if there is a group [[Automorphism|automorphism]] $  \varphi $
 +
such that $  \varphi ( D _ {1} ) = D _ {2} g $.  
 +
The existence of a $  ( v,k, \lambda ) $-
 +
difference set is equivalent to the existence of a symmetric $  ( v,k, \lambda ) $-
 +
design with $  G $
 +
acting as a regular automorphism group (cf. also [[Difference set|Difference set]]). If two difference sets correspond to isomorphic designs, the difference sets are called isomorphic. Given certain parameters $  v $,  
 +
$  k $
 +
and $  \lambda $
 +
and a group $  G $,  
 +
the problem is to construct a difference set with those parameters or prove non-existence. To prove non-existence of Abelian difference sets, results from [[Algebraic number theory|algebraic number theory]] are required: The existence of the difference set implies the existence of an [[algebraic integer]] of absolute value $  n $
 +
in some [[Cyclotomic field|cyclotomic field]]. In several cases one can prove that no such element exists, see [[#References|[a5]]]. Another approach for non-existence results uses multipliers: A multiplier of an Abelian difference set in $  G $
 +
is an automorphism $  \varphi $
 +
of $  G $
 +
such that $  \varphi ( D ) = Dg $.  
 +
A statement that certain group automorphisms have to be multipliers of putative difference sets is called a multiplier theorem. It is known, for instance, that the mapping $  g \mapsto g  ^ {t} $
 +
is a multiplier of an Abelian difference set provided that: i) $  t $
 +
divides the order $  n $;  
 +
ii) $  t $
 +
is relatively prime to $  v $;  
 +
and iii) $  t > \lambda $.  
 +
Several generalizations of this theorem are known, see [[#References|[a1]]].
  
 
On the existence side, some families of Abelian difference sets are known, see [[#References|[a3]]].
 
On the existence side, some families of Abelian difference sets are known, see [[#References|[a3]]].
Line 6: Line 58:
 
The most popular examples are as follows.
 
The most popular examples are as follows.
  
Cyclic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002042.png" />-difference sets, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002043.png" /> a prime power. The classical construction of these difference sets (elements in the multiplicative group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002044.png" /> whose trace is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002045.png" />) corresponds to the classical point-hyperplane designs of a finite projective space. For non-equivalent cyclic examples with the same parameters, see [[#References|[a5]]].
+
Cyclic $  \left ( {
 +
\frac{q ^ {d + 1 } - 1 }{q - 1 }
 +
} , {
 +
\frac{q  ^ {d} - 1 }{q - 1 }
 +
} , {
 +
\frac{q ^ {d - 1 } - 1 }{q - 1 }
 +
} \right ) $-
 +
difference sets, $  q $
 +
a prime power. The classical construction of these difference sets (elements in the multiplicative group of $  { \mathop{\rm GF} } ( q ^ {d + 1 } ) $
 +
whose trace is 0 $)  
 +
corresponds to the classical point-hyperplane designs of a finite projective space. For non-equivalent cyclic examples with the same parameters, see [[#References|[a5]]].
  
Quadratic residues in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002047.png" /> (Paley difference sets). Some other cyclotomic classes yield difference sets too, see [[#References|[a1]]].
+
Quadratic residues in $  { \mathop{\rm GF} } ( q ) $,  
 +
$  q \equiv 3 ( { \mathop{\rm mod} } 4 ) $(
 +
Paley difference sets). Some other cyclotomic classes yield difference sets too, see [[#References|[a1]]].
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002048.png" />-difference sets, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002049.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002050.png" /> is a product of odd prime numbers (Hadamard difference sets, [[#References|[a2]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002051.png" />, it is known that an Abelian Hadamard difference set exists if and only if the exponent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002052.png" /> is at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002053.png" />, see [[#References|[a4]]].
+
$  ( 4m  ^ {2} , 2m  ^ {2} - m, m  ^ {2} - m ) $-
 +
difference sets, $  m = 2  ^ {a} 3  ^ {b} u  ^ {2} $,  
 +
where $  u $
 +
is a product of odd prime numbers (Hadamard difference sets, [[#References|[a2]]]). If $  m = 2  ^ {a} $,  
 +
it is known that an Abelian Hadamard difference set exists if and only if the exponent of $  G $
 +
is at most $  2 ^ {a + 2 } $,  
 +
see [[#References|[a4]]].
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002054.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002055.png" />-difference sets, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002056.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002057.png" /> an odd prime power) or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002058.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002059.png" /> (generalized Hadamard difference sets, [[#References|[a2]]]).
+
$  \left ( 4m ^ {2n } \cdot {
 +
\frac{m ^ {2n } - 1 }{m  ^ {2} - 1 }
 +
} , m ^ {2n - 1 } \cdot \left ( {
 +
\frac{2 ( m ^ {2n } - 1 ) }{m + 1 }
 +
} + 1 \right ) , \right . $
 +
$  \left . ( m ^ {2n } - m ^ {2n - 1 } ) \cdot {
 +
\frac{m ^ {2n - 1 } + 1 }{m + 1 }
 +
} \right ) $-
 +
difference sets, where $  m = q  ^ {2} $(
 +
$  q $
 +
an odd prime power) or $  m = 3  ^ {t} $
 +
or $  m =2 $(
 +
generalized Hadamard difference sets, [[#References|[a2]]]).
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002060.png" />-difference sets, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002061.png" /> a prime power (McFarland difference sets).
+
$  \left ( q ^ {d + 1 } \left ( 1 + {
 +
\frac{q ^ {d + 1 } - 1 }{q - 1 }
 +
} \right ) , q  ^ {d} \cdot {
 +
\frac{q ^ {d + 1 } - 1 }{q - 1 }
 +
} , q  ^ {d} \cdot {
 +
\frac{q  ^ {d} - 1 }{q - 1 }
 +
} \right ) $-
 +
difference sets, $  q $
 +
a prime power (McFarland difference sets).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Beth,  D. Jungnickel,  H. Lenz,  "Design theory" , Cambridge Univ. Press  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  Y.Q. Chen,  "On the existence of abelian Hadamard difference sets and generalized Hadamard difference sets"  ''Finite Fields and Appl.''  (to appear)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D. Jungnickel,  A. Pott,  "Difference sets: Abelian"  Ch.J. Colbourn (ed.)  J.H. Dinitz (ed.) , ''CRC Handbook of Combinatorial Designs'' , CRC  (1996)  pp. 297–307</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.G. Kraemer,  "Proof of a conjecture on Hadamard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002062.png" />-groups"  ''J. Combinatorial Th. A'' , '''63'''  (1993)  pp. 1–10</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A. Pott,  "Finite geometry and character theory" , ''Lecture Notes in Mathematics'' , '''1601''' , Springer  (1995)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Beth,  D. Jungnickel,  H. Lenz,  "Design theory" , Cambridge Univ. Press  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  Y.Q. Chen,  "On the existence of abelian Hadamard difference sets and generalized Hadamard difference sets"  ''Finite Fields and Appl.''  (to appear)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D. Jungnickel,  A. Pott,  "Difference sets: Abelian"  Ch.J. Colbourn (ed.)  J.H. Dinitz (ed.) , ''CRC Handbook of Combinatorial Designs'' , CRC  (1996)  pp. 297–307</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.G. Kraemer,  "Proof of a conjecture on Hadamard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002062.png" />-groups"  ''J. Combinatorial Th. A'' , '''63'''  (1993)  pp. 1–10</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A. Pott,  "Finite geometry and character theory" , ''Lecture Notes in Mathematics'' , '''1601''' , Springer  (1995)</TD></TR></table>

Revision as of 16:08, 1 April 2020


Let $ G $ be a group of order $ v $ and $ D \subseteq G $ with $ | D | = k $. Then $ D $ is called a $ ( v,k, \lambda ) $- difference set of order $ n = k - \lambda $ in $ G $ if every element $ g \neq 1 $ in $ G $ has exactly $ \lambda $ different representations $ g = d \cdot d ^ {\prime - 1 } $ with $ d,d ^ \prime \in D $, see [a1]. For instance, $ \{ 1,2,4 \} $ is a $ ( 7,3,1 ) $- difference set in the cyclic group of order $ 7 $. If $ G $ is Abelian (cyclic, non-Abelian), the difference set is called Abelian (cyclic, non-Abelian). Two difference sets $ D _ {1} $ and $ D _ {2} $ in $ G $ are equivalent if there is a group automorphism $ \varphi $ such that $ \varphi ( D _ {1} ) = D _ {2} g $. The existence of a $ ( v,k, \lambda ) $- difference set is equivalent to the existence of a symmetric $ ( v,k, \lambda ) $- design with $ G $ acting as a regular automorphism group (cf. also Difference set). If two difference sets correspond to isomorphic designs, the difference sets are called isomorphic. Given certain parameters $ v $, $ k $ and $ \lambda $ and a group $ G $, the problem is to construct a difference set with those parameters or prove non-existence. To prove non-existence of Abelian difference sets, results from algebraic number theory are required: The existence of the difference set implies the existence of an algebraic integer of absolute value $ n $ in some cyclotomic field. In several cases one can prove that no such element exists, see [a5]. Another approach for non-existence results uses multipliers: A multiplier of an Abelian difference set in $ G $ is an automorphism $ \varphi $ of $ G $ such that $ \varphi ( D ) = Dg $. A statement that certain group automorphisms have to be multipliers of putative difference sets is called a multiplier theorem. It is known, for instance, that the mapping $ g \mapsto g ^ {t} $ is a multiplier of an Abelian difference set provided that: i) $ t $ divides the order $ n $; ii) $ t $ is relatively prime to $ v $; and iii) $ t > \lambda $. Several generalizations of this theorem are known, see [a1].

On the existence side, some families of Abelian difference sets are known, see [a3].

Examples.

The most popular examples are as follows.

Cyclic $ \left ( { \frac{q ^ {d + 1 } - 1 }{q - 1 } } , { \frac{q ^ {d} - 1 }{q - 1 } } , { \frac{q ^ {d - 1 } - 1 }{q - 1 } } \right ) $- difference sets, $ q $ a prime power. The classical construction of these difference sets (elements in the multiplicative group of $ { \mathop{\rm GF} } ( q ^ {d + 1 } ) $ whose trace is $ 0 $) corresponds to the classical point-hyperplane designs of a finite projective space. For non-equivalent cyclic examples with the same parameters, see [a5].

Quadratic residues in $ { \mathop{\rm GF} } ( q ) $, $ q \equiv 3 ( { \mathop{\rm mod} } 4 ) $( Paley difference sets). Some other cyclotomic classes yield difference sets too, see [a1].

$ ( 4m ^ {2} , 2m ^ {2} - m, m ^ {2} - m ) $- difference sets, $ m = 2 ^ {a} 3 ^ {b} u ^ {2} $, where $ u $ is a product of odd prime numbers (Hadamard difference sets, [a2]). If $ m = 2 ^ {a} $, it is known that an Abelian Hadamard difference set exists if and only if the exponent of $ G $ is at most $ 2 ^ {a + 2 } $, see [a4].

$ \left ( 4m ^ {2n } \cdot { \frac{m ^ {2n } - 1 }{m ^ {2} - 1 } } , m ^ {2n - 1 } \cdot \left ( { \frac{2 ( m ^ {2n } - 1 ) }{m + 1 } } + 1 \right ) , \right . $ $ \left . ( m ^ {2n } - m ^ {2n - 1 } ) \cdot { \frac{m ^ {2n - 1 } + 1 }{m + 1 } } \right ) $- difference sets, where $ m = q ^ {2} $( $ q $ an odd prime power) or $ m = 3 ^ {t} $ or $ m =2 $( generalized Hadamard difference sets, [a2]).

$ \left ( q ^ {d + 1 } \left ( 1 + { \frac{q ^ {d + 1 } - 1 }{q - 1 } } \right ) , q ^ {d} \cdot { \frac{q ^ {d + 1 } - 1 }{q - 1 } } , q ^ {d} \cdot { \frac{q ^ {d} - 1 }{q - 1 } } \right ) $- difference sets, $ q $ a prime power (McFarland difference sets).

References

[a1] T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986)
[a2] Y.Q. Chen, "On the existence of abelian Hadamard difference sets and generalized Hadamard difference sets" Finite Fields and Appl. (to appear)
[a3] D. Jungnickel, A. Pott, "Difference sets: Abelian" Ch.J. Colbourn (ed.) J.H. Dinitz (ed.) , CRC Handbook of Combinatorial Designs , CRC (1996) pp. 297–307
[a4] R.G. Kraemer, "Proof of a conjecture on Hadamard -groups" J. Combinatorial Th. A , 63 (1993) pp. 1–10
[a5] A. Pott, "Finite geometry and character theory" , Lecture Notes in Mathematics , 1601 , Springer (1995)
How to Cite This Entry:
Abelian difference set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Abelian_difference_set&oldid=18725
This article was adapted from an original article by A. Pott (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article