User:Maximilian Janisch/latexlist/latex/NoNroff/63
List
1. ; $A = \int^{ \bigoplus} A ( \zeta ) d \mu ( \zeta ) ,$ ; confidence 0.421
2. ; $K _ { 7 , 9}$ ; confidence 0.421
3. ; $\hat{x} ( n )$ ; confidence 0.421
4. ; $m _ { i + j} = \langle x ^ { i } , x ^ { j } \rangle$ ; confidence 0.421
5. ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { i \nu }\, f ( x _ { \nu } ) + \sum _ { \rho = 1 } ^ { i } \sum _ { \nu = 1 } ^ { 2 ^ { \rho - 1 } ( n + 1 ) } \beta _ { i \rho \nu }\, f ( \xi _ { \nu } ^ { \rho } ),$ ; confidence 0.421
6. ; $C \in M _ { m \times m } ( K )$ ; confidence 0.421
7. ; $\eta ( s ) = \sum _ { a _ { n } \neq 0 } \frac { a _ { n } } { | a _ { n } | } | a _ { n } | ^ { - s }$ ; confidence 0.420
8. ; $( \ldots (( F A _ { 1 } ) A _ { 2 } ) \ldots A _ { n } )$ ; confidence 0.420
9. ; $M = \frac { 1 } { 3 ( n + k ) } \left( \frac { \delta _ { 1 } - \delta _ { 2 } } { 16 } \right) ^ { 2 n + 2 k } \delta _ { 2 } ^ { m + ( n + k ) ( 1 + \pi / k ) }\times$ ; confidence 0.420
10. ; $\operatorname { Ext } _ { \mathcal { H } } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420
11. ; $\Delta \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) = \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \bigotimes \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right),$ ; confidence 0.420
12. ; $= ( 2 \pi ) ^ { - 2 n } \int _ { \mathbf{R} ^ { 2 n } } e ^ { i ( p \mathcal{D} + q \mathcal{X} ) } \hat { \sigma } ( p , q ) d p d q.$ ; confidence 0.420
13. ; $\langle L ^ { ( 1 ) } \rangle = - A ^ { 3 } \langle L \rangle$ ; confidence 0.420
14. ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420
15. ; $f : \mathcal{T} \rightarrow \operatorname {GL} ( n , \mathbf{C} )$ ; confidence 0.420
16. ; $\mathsf{E} \varepsilon _ { t } = 0$ ; confidence 0.420
17. ; $\overline { \delta } _{k} : \overline { D } _ { k } \rightarrow \overline { D } _ { k - 1 }$ ; confidence 0.420
18. ; $\mathcal{L} _ { \omega _ { 1 } \omega }$ ; confidence 0.420
19. ; $\tilde { \Phi } ( s ) = \operatorname { sup } \{ | s | t - \Phi ( t ) : t \geq 0 \}$ ; confidence 0.419
20. ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } g _ { 2 } ( k ) } { M _ { d } ( k ) },$ ; confidence 0.419
21. ; $p o$ ; confidence 0.419
22. ; $f _ { i } : \mathbf{R} ^ { m } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.419
23. ; $\| P \| _{\infty} \| Q \| _{\infty} \leq \delta^{d} \| PQ \| _{\infty} $ ; confidence 0.419
24. ; $a b ^ { k } a ^ { - 1 }$ ; confidence 0.419
25. ; $u ^ { p }$ ; confidence 0.419
26. ; $S _ { r } = \left\{ ( v _ { 0 } , \dots , v _ { r } ) \in \mathbf{R} ^ { r + 1 } : v _ { j } \geq 0 , \sum _ { j = 0 } ^ { r } v _ { j } = 1 \right\}$ ; confidence 0.419
27. ; $J \times G$ ; confidence 0.418
28. ; $C _ { f } \subset \operatorname {Dbx} _ { f }$ ; confidence 0.418
29. ; $P _ { 3 }$ ; confidence 0.418
30. ; $\operatorname{II}$ ; confidence 0.418
31. ; $R _ { n } ^ { m } ( r )$ ; confidence 0.418
32. ; $r _ { i } ( X _ { i } )$ ; confidence 0.418
33. ; $= \operatorname { lim } _ { t \rightarrow \infty } \int \prod _ { k = 1 } ^ { n } A _ { k } ( q ( t _ { k } ) ) d \mu _ { t } ( q ( \cdot ) ).$ ; confidence 0.418
34. ; $H _ { n } ^ { ( k ) } ( \mathbf{x} )$ ; confidence 0.418
35. ; $\Psi _ { V , W \bigotimes Z } = \Psi _ { V ,\, Z } \circ \Psi _ { V , W } .$ ; confidence 0.418
36. ; $B _ { p } ^ { S }$ ; confidence 0.418
37. ; $f - q \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } ^ { * } , \ldots , M _ { n } ^ { * } ; \mathbf{R} ^ { n } ),$ ; confidence 0.418
38. ; $( C ( \mathcal{S} ) , \overline { g } )$ ; confidence 0.418
39. ; $m ^ { \uparrow X } ( A ) = 0$ ; confidence 0.417
40. ; $K [ G ]$ ; confidence 0.417
41. ; $m_1$ ; confidence 0.417
42. ; $T _ { A }$ ; confidence 0.417
43. ; $\mathbf{LOC}$ ; confidence 0.417
44. ; $\operatorname { char } K \neq 2$ ; confidence 0.417
45. ; $[ \overline { t } _0 , t _ { 0 } ]$ ; confidence 0.417
46. ; $1 \leq \| ( \mu I - A ) ^ { - 1 } \cdot E \| \leq \| ( \mu I - A ) ^ { - 1 } \| \cdot \| E \| .$ ; confidence 0.417
47. ; $\operatorname { Th } _ { \mathcal{S} _ { P }} \mathfrak { M }$ ; confidence 0.417
48. ; $v ^ { \perp } \subset T _ { p } M$ ; confidence 0.417
49. ; $J _ { a }$ ; confidence 0.417
50. ; $\phi _ { n } ( z ) = M _ { n } ( z ) / \sqrt { \mathcal{M} _ { n - 1} \mathcal{M} _ { n }} $ ; confidence 0.417
51. ; $( l _ { 2 } - k ^ { 2 } ) f _ { 2 } = 0$ ; confidence 0.417
52. ; $\overline { H _ { 1 } } \cdot \overline { H _ { 2 } } = \overline { H _ { 1 } \cup _ { d } H _ { 2 } }$ ; confidence 0.417
53. ; $F _ { 0 }$ ; confidence 0.417
54. ; $\mathbf{C} \backslash K$ ; confidence 0.416
55. ; $| \mu ( f ) | \leq C _ { U } \operatorname { sup } _ { U } | f ( z ) |.$ ; confidence 0.416
56. ; $L_{E}$ ; confidence 0.416
57. ; $[ K : \mathbf{Q} ]$ ; confidence 0.416
58. ; $z_{0} , \dots , z _ { r - 1}$ ; confidence 0.416
59. ; $\beta ( \phi , \rho ) ( t ) \sim \sum _ { n \geq 0 } \beta _ { n } ( \phi , \rho ) t ^ { n / 2 }.$ ; confidence 0.416
60. ; $\operatorname {Wh} \pi_{1}$ ; confidence 0.416
61. ; $y _ { 0 } \in P$ ; confidence 0.416
62. ; $( \mathcal{K} _ { - } , [\cdot , \cdot] )$ ; confidence 0.416
63. ; $e ^ { i t \mathcal{B} }$ ; confidence 0.416
64. ; $K _ { 5 ,\, n }$ ; confidence 0.416
65. ; $h ^ { * }$ ; confidence 0.416
66. ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right).$ ; confidence 0.416
67. ; $R ( x ; a _ { 0 } , \dots , a _ { N } ) \equiv L [ u _ { N } ( x ) ] - f$ ; confidence 0.416
68. ; $\mathcal{A} ^ { * }$ ; confidence 0.416
69. ; $H _ { S } ^ { i } ( D ) = 0$ ; confidence 0.416
70. ; $\mathbf{CP} ^ { 4 }$ ; confidence 0.416
71. ; $F \subseteq A$ ; confidence 0.416
72. ; $Q_{j}$ ; confidence 0.415
73. ; $x , y$ ; confidence 0.415
74. ; $m = k ^ { \prime \mu } ( \theta ) = \int _ { E } x \mathsf{P} ( \theta , \mu ) ( d x ),$ ; confidence 0.415
75. ; $C _ { \text{nd} } ^ { \infty } ( \Omega )$ ; confidence 0.415
76. ; $\gamma : \omega \square \operatorname{Gpd} \rightarrow \mathcal{C} \operatorname{rs}$ ; confidence 0.415
77. ; $\{ \tilde{p} : p \in P \}$ ; confidence 0.415
78. ; $\hat { \tau }_{0} = 0,$ ; confidence 0.415
79. ; $C = \mathbf{Z} ( Q ) = \mathbf{C} _ { Q } ( R )$ ; confidence 0.415
80. ; $\wedge ^ { * } \mathcal{E}$ ; confidence 0.415
81. ; $s \in \mathbf{T}$ ; confidence 0.415
82. ; $a \in \Omega$ ; confidence 0.415
83. ; $\operatorname { ad } X$ ; confidence 0.415
84. ; $\mu _{1}$ ; confidence 0.415
85. ; $\{ u _ { i } ^ { n } \}$ ; confidence 0.415
86. ; $= \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } z _ { 1 } ^ { i } z _ { 2 } ^ { j }$ ; confidence 0.415
87. ; $\operatorname { tr } ( K _ { i } ) = 1$ ; confidence 0.415
88. ; $( a _ { n } ) _ { n \in \mathbf{N} }$ ; confidence 0.415
89. ; $\Lambda _ { T _ { n } } ( a , x ) = \left( \frac { a + a ^ { - 1 } - x } { x } \right) ^ { n - 1 }.$ ; confidence 0.415
90. ; $H _ { n } ( r , 0 ) = r ^ { n }$ ; confidence 0.415
91. ; $y \in F$ ; confidence 0.415
92. ; $\mathcal{A } ^ { \text{C} }$ ; confidence 0.415
93. ; $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ ; confidence 0.414
94. ; $\mathbf{l} ( t , 0 )$ ; confidence 0.414
95. ; $q_h$ ; confidence 0.414
96. ; $\sigma ( a )$ ; confidence 0.414
97. ; $v _ { t } / \sum _ { i = 1 } ^ { k } v _ { i , t }$ ; confidence 0.414
98. ; $\delta _{( 1 )} > K _ { ( 1 ) } / K _ { ( 2 ) }$ ; confidence 0.414
99. ; $\mathbf{X} \beta$ ; confidence 0.414
100. ; $\tilde { \delta _ { z } } : f \in \mathcal{H} _ { b } ( E ) \rightarrow \tilde { f } ( z ) \in \mathbf{C}$ ; confidence 0.414
101. ; $\tilde{x} ^ { ( l ) }$ ; confidence 0.414
102. ; $P : = \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.414
103. ; $f ( [ \cdot , \cdot ] )$ ; confidence 0.413
104. ; $\langle \mathbf{A} , \mathcal{C} \rangle$ ; confidence 0.413
105. ; $\sigma _ { 0 } = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \overline { \zeta } _{j} d \overline { \zeta } [ j ] \bigwedge d \zeta .$ ; confidence 0.413
106. ; $F^{\mu \nu}$ ; confidence 0.413
107. ; $\mathcal{MH} _ { \mathbf{R} } ^ { + }$ ; confidence 0.413
108. ; $\psi ( z )$ ; confidence 0.413
109. ; $\text{p} \in S$ ; confidence 0.413
110. ; $t _ { n_{*} }$ ; confidence 0.413
111. ; $| n | = \operatorname { min } _ { 1 \leq i \leq d } | n _ { i } |$ ; confidence 0.413
112. ; $n = k , k + 1 , \dots .$ ; confidence 0.413
113. ; $X = ( \mathbf{x} _ { 1 } , \dots , \mathbf{x} _ { n } )$ ; confidence 0.413
114. ; $k ! z \,/ ( z - 1 ) ^ { k + 1 }$ ; confidence 0.413
115. ; $\mathbf{C} [ z , \overline{z} ]$ ; confidence 0.413
116. ; $v \in \mathfrak{G}$ ; confidence 0.413
117. ; $D = \langle x ^ { 2 } \rangle \subset \mathbf{R} [ x ]$ ; confidence 0.413
118. ; $\zeta ( s , a ) : = \sum _ { k = 0 } ^ { \infty } \frac { 1 } { ( k + a ) ^ { s } },$ ; confidence 0.413
119. ; $( \lambda x . M ) N$ ; confidence 0.413
120. ; $\tilde { g } = t ^ { 2 } \sum _ { i , j } \tilde { g } _ { i j } ( x , t ) d x ^ { i } \bigotimes d x ^ { j } +$ ; confidence 0.413
121. ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413
122. ; $u_{0}$ ; confidence 0.413
123. ; $p _ { n } ( s )$ ; confidence 0.413
124. ; $f ( t ) = \left\{ \begin{array} { l l } { o \left( \frac { t } { \operatorname { log } t } \right) , } & { d = 2, } \\ { o ( t ) , } & { d \geq 3, } \end{array} \right.$ ; confidence 0.412
125. ; $T _ { n } ^ { * } ( x ) : = c _ { 0 } ^ { n } + c _ { 1 } ^ { n } x + \ldots + c _ { n } ^ { n } x ^ { n }$ ; confidence 0.412
126. ; $\{ c _ { 1 } , \dots , c _ { n } , \dots \}$ ; confidence 0.412
127. ; $H _ { l } ^ { i } ( X )$ ; confidence 0.412
128. ; $( b _ { m } ) _ { m \geq 0 }$ ; confidence 0.412
129. ; $S _ { t } = c _ { 0 } ( 1 - \lambda ) + \lambda S _ { t - 1 } + c _ { 1 } u _ { t } + \mu _ { t } - \lambda \mu _ { t - 1 } .$ ; confidence 0.412
130. ; $B \operatorname {SL} _ { q } ( 2 )$ ; confidence 0.412
131. ; $K _ { n , p } ( t ) = \frac { \operatorname { sin } ( ( 2 n + 1 - p ) t / 2 ) \operatorname { sin } ( ( p + 1 ) t / 2 ) } { 2 ( p + 1 ) \operatorname { sin } ^ { 2 } t / 2 } ,$ ; confidence 0.412
132. ; $a = 1 , \dots , m$ ; confidence 0.412
133. ; $v \in A _ { p } ( G )$ ; confidence 0.412
134. ; $f _ { a }$ ; confidence 0.412
135. ; $A ( g ) \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.412
136. ; $T ^ { n } = P B ^ { n }$ ; confidence 0.412
137. ; $\frac { \partial \rho } { \partial t } = \{ H , \rho \} _ { \text{qu} .} \equiv \frac { 1 } { i \hbar } [ H \rho - \rho H ],$ ; confidence 0.412
138. ; $\operatorname { ev } _ { x } ( a )$ ; confidence 0.412
139. ; $c _ { 1 } | \xi | ^ { m _ { 1 } } \leq | b | \leq c _ { 2 } | \xi | ^ { m _ { 2 } }$ ; confidence 0.412
140. ; $\operatorname {Ind} ^{ G }_ { B } ( \lambda )$ ; confidence 0.412
141. ; $\operatorname {CH} ^ { i } ( X , j ) \otimes \mathbf{Q} \simeq H _ { \mathcal{M} } ^ { 2 j - i } ( X , \mathbf{Q} ( i ) )$ ; confidence 0.412
142. ; $\left\{ \begin{array} { l l } { \phi ( 0 , \lambda ) = 1 , } & { \theta ( 0 , \lambda ) = 0, } \\ { \phi ^ { \prime } ( 0 , \lambda ) = 0 , } & { \theta ^ { \prime } ( 0 , \lambda ) = 1. } \end{array} \right.$ ; confidence 0.412
143. ; $\nu _ { 1 } , \dots , \nu _ { \text{l} }$ ; confidence 0.411
144. ; $L_{n}$ ; confidence 0.411
145. ; $\zeta = ( 1 , \zeta _ { 2 } , \dots , \zeta _ { n } )$ ; confidence 0.411
146. ; $= \frac { k } { 4 \pi } \int _ { S ^ { 2 } } f ( \alpha ^ { \prime } , \beta , k ) \overline { f ( \alpha , \beta , k ) } d \beta ,$ ; confidence 0.411
147. ; $w _ { n - 1}$ ; confidence 0.411
148. ; $\Omega \subset D ^ { n }$ ; confidence 0.411
149. ; $\vee$ ; confidence 0.411
150. ; $A = \operatorname { diag } \{ b _ { 11 } , \dots , b _ { n n } \}$ ; confidence 0.411
151. ; $k = \mathbf{Q} ( \mu _ { p } )$ ; confidence 0.411
152. ; $h \in \operatorname { QS} ( \mathbf{T} )$ ; confidence 0.411
153. ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots , \ldots , u ( z , \lambda _ { N } ) = z ^ { \lambda _ { N } } +\dots$ ; confidence 0.410
154. ; $x ^ { p } - x - p k $ ; confidence 0.410
155. ; $= D _ { t } ^ { m } u + \sum _ { j = 1 } ^ { m } \sum _ { | \alpha | \leq m - j } p _ { j , \alpha } ( t , x ) D _ { t } ^ { j } D _ { x } ^ { \alpha } u = f ( t , x ) , D _ { t } ^ { j } u ( 0 , x ) = u _ { j } ^ { 0 } ( x ) , \quad j = 0 , \ldots , m - 1.$ ; confidence 0.410
156. ; $h \otimes k = ( \theta \otimes \theta ) \otimes ( \varphi \otimes \varphi ) \in \mathsf{S} ^ { 2 } \mathcal{E} \otimes \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.410
157. ; $K ^ {b} ( P _ { \Lambda } )$ ; confidence 0.410
158. ; $\{ U _ { t } \}$ ; confidence 0.410
159. ; $d \alpha = d a _ { n } \circ \ldots \circ d a _ { 1 }$ ; confidence 0.410
160. ; $A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.410
161. ; $a , x \in G$ ; confidence 0.410
162. ; $\operatorname {inj} M = \operatorname { inf } _ { p \in M } \operatorname { sup } \{ r : \operatorname { exp } _ { p } \text { injective on } B _ { r } ( 0 ) \subset T _ { p } M \},$ ; confidence 0.410
163. ; $a _ { i } = \alpha _ { i }$ ; confidence 0.410
164. ; $\{ G ; . , e ,^{ - 1} \}$ ; confidence 0.409
165. ; $H ^ { \infty }$ ; confidence 0.409
166. ; $\sum _ { H : H \leq G } \mu ( H , G ) | H | ^ { S },$ ; confidence 0.409
167. ; $( f ( . ) , K ( . , y ) ) _ { H } = ( L F , K ( . , y ) ) _ { H } =$ ; confidence 0.409
168. ; $\tilde { A }_{ n }$ ; confidence 0.409
169. ; $\alpha _ { n } ( t ) = n ^ { 1 / 2 } ( \Gamma _ { n } ( t ) - t ) , \quad 0 \leq t \leq 1.$ ; confidence 0.409
170. ; $a _ { n } * a _ { n + 1} = a _ { n }$ ; confidence 0.409
171. ; $B ^ { l }$ ; confidence 0.409
172. ; $g(\overline{u}_1)$ ; confidence 0.409
173. ; $\operatorname {Alg} \operatorname {Mod}^{*\text{L}} \mathcal{DS}_{P}$ ; confidence 0.409
174. ; $Q ( \theta | \theta ^ { ( t ) } ) = \mathsf{E} \left[ \operatorname { log } L ( \theta | Y _ { \text{aug} } ) | Y _ { \text{obs} } , \theta ^ { ( t ) } \right],$ ; confidence 0.409
175. ; $\mathcal{T} = \operatorname {Fac} T$ ; confidence 0.409
176. ; $C _ { \psi }$ ; confidence 0.409
177. ; $\mu z ( f ( x _ { 1 } , \ldots , x _ { n } , z ) = 0 )$ ; confidence 0.409
178. ; $\rho _ { \text { atom } } ^ { \text {TF} } ( x ; N = \lambda Z , Z ) =$ ; confidence 0.409
179. ; $\operatorname { co } \mathcal{C} = \{ S : \overline{S} \in \mathcal{C} \}.$ ; confidence 0.409
180. ; $= 2 \operatorname { Re } \left( \sum _ { j , k } \rho _ { j k } ( a ) w _ { j } w _ { k } \right) + 2 \sum _ { j , k } \rho _ { j \overline { k } } ( a ) w _ { j } \overline { w } _ { k },$ ; confidence 0.409
181. ; $Q _ { n }$ ; confidence 0.409
182. ; $\prod _ { \text{p} ^ { \prime } \in S ^ { \prime } } G ( K _ { \text{p} ^ { \prime } } ),$ ; confidence 0.409
183. ; $l ( u ) = ( 2 u | \operatorname {ln} | \operatorname {ln} u | | ) ^ { 1 / 2 }$ ; confidence 0.409
184. ; $E ^ { 1 } = J ^ { 1 } ( E ) = M \times F \times \mathbf{R} ^ { n m },$ ; confidence 0.409
185. ; $x , y \in \mathcal{H} ^ { n }$ ; confidence 0.408
186. ; $q_{ it}$ ; confidence 0.408
187. ; $C ^ { \prime_{ BC}}$ ; confidence 0.408
188. ; $P _ { L } ( v , z ) - P _ { T _ { \text{com} ( L ) }} ( v , z )$ ; confidence 0.408
189. ; $h / \mathsf{E} X _ { 1 }$ ; confidence 0.408
190. ; $a _ { 1 } = a _ { 2 } = 1$ ; confidence 0.408
191. ; $c _ { i } > 0$ ; confidence 0.408
192. ; $\mathcal{T} ^ { n }$ ; confidence 0.408
193. ; $\hat { \phi } ( j )$ ; confidence 0.408
194. ; $\mathcal{E}_{ * *}$ ; confidence 0.408
195. ; $\| h _ { n } \| \rightarrow 0$ ; confidence 0.408
196. ; $N ( X ( t ) , A ( t ) , t ) = A ( t ) \quad \int _ { a ( X ( t ) ) F + b } ^ { \infty } g ( W ) d W.$ ; confidence 0.407
197. ; $d _ { w } > 0$ ; confidence 0.407
198. ; $[ . , . ] : \Omega ^ { k } ( M ; T M ) \times \Omega ^ { l } ( M ; T M ) \rightarrow \Omega ^ { k + l } ( M ; T M )$ ; confidence 0.407
199. ; $\chi [ f _ { 0 } , \dots , f _ { n } ]$ ; confidence 0.407
200. ; $\rho_{0} $ ; confidence 0.407
201. ; $[ a _ { 1 } , a _ { 2 } ]$ ; confidence 0.407
202. ; $s _ { n }$ ; confidence 0.407
203. ; $\mathbf{R} ^ { n } \subset \mathbf{C} ^ { k }$ ; confidence 0.407
204. ; $( y _ { 1 } , \dots , y _ { m } ) \in M ^ { m }$ ; confidence 0.407
205. ; $\operatorname { span } \langle D \rangle < 4 c ( D )$ ; confidence 0.407
206. ; $F _ { 1 }$ ; confidence 0.407
207. ; $V = \mathbf{R} ^ { n }$ ; confidence 0.407
208. ; $( d ^ { k } C _ { j } / d x ^ { k } ) ( x _ { i } ) = [ ( d C _ { j } / d x ) ( x _ { i } ) ] ^ { k }$ ; confidence 0.407
209. ; $A _ { i } A _ { j } = \sum _ { k = 1 } ^ { r } p _ { i , j } ^ { k } A _ { k }$ ; confidence 0.407
210. ; $\operatorname { deg } _ { B }$ ; confidence 0.406
211. ; $a ^ { g } \neq a$ ; confidence 0.406
212. ; $\Delta ( \lambda , \mu ) = \operatorname { det } [ E \lambda - A \mu ] = \sum _ { i = 0 } ^ { n } a _ { i , n - i } \lambda ^ { i } \mu ^ { n - i }.$ ; confidence 0.406
213. ; $S _ { \rho , \delta } ^ { \mu } = S \left( \langle \xi \rangle ^ { \mu } , \langle \xi \rangle ^ { 2 \delta } | d x | ^ { 2 } + \langle \xi \rangle ^ { - 2 \rho } | d \xi | ^ { 2 } \right),$ ; confidence 0.406
214. ; $E _ { \text{atom} } ^ { \text{TF} } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { \text{atom} } ^ { \text{TF} } ( \lambda , 1 )$ ; confidence 0.406
215. ; $\varphi \in G _ { n }$ ; confidence 0.406
216. ; $x _ { 0 } \in \mathbf{R} ^ { m }$ ; confidence 0.406
217. ; $P _ { 1 } , \ldots , P _ { h }$ ; confidence 0.406
218. ; $\langle L _ { + } \rangle = A \langle L _ { 0 } \rangle + A ^ { - 1 } \langle L _ { \infty } \rangle .$ ; confidence 0.405
219. ; $\| u \| _ { T } ^ { 2 } = \sum _ { \xi \in \mathbf{Z} ^ { n } } ( 1 + | \xi | ) ^ { 2 r } e ^ { 2 T | \xi | ^ { 1 / s } } | \hat { u } ( \xi ) | ^ { 2 },$ ; confidence 0.405
220. ; $B ^ { m } ( X )$ ; confidence 0.405
221. ; $\mathcal{Y} _ { * }$ ; confidence 0.405
222. ; $B ^ { H } = \{ a \in B : h ^ { - 1 } a h =a \ \text {for all } h \in H \}.$ ; confidence 0.405
223. ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( \mathcal{D} _ { 1 } ) } \int _ { \partial \mathcal{D} _ { 1 } } f ( \zeta ) \nu ( \zeta - a ) = f ( a ).$ ; confidence 0.405
224. ; $\| x \| ^ { p } + \| y \| ^ { p } = \| x + y \| ^ { p }$ ; confidence 0.405
225. ; $\mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.405
226. ; $G : A G \overset{\text{dom}_G}{\underset{\underset{\text{codom}_G}{\rightarrow} }{\rightarrow}} O G,$ ; confidence 0.405
227. ; $w ( i , j , k , l ) = w \left( \begin{array} { c c c } { \square } & { l } & { \square } \\ { i } & { + } & { k } \\ { \square } & { j } & { \square } \end{array} \right) = \operatorname { exp } \left( - \frac { \epsilon ( i , j , k , l ) } { k _ { B } T } \right).$ ; confidence 0.405
228. ; $x _ { i } ^ { * }$ ; confidence 0.405
229. ; $a _{0} , \dots , a _ { k - 1 }$ ; confidence 0.405
230. ; $E ^{ i } _ { 2 ^{ i - 1} ( n + 1 ) } = T _ { 2 ^{ i - 1} ( n + 1 ) }$ ; confidence 0.405
231. ; $s _ { k } = z _ { 1 } ^ { k } + \ldots + z _ { n } ^ { k }$ ; confidence 0.405
232. ; $\langle f , g \rangle = \int _ { - \pi } ^ { \pi } f ( e ^ { i \theta }) \overline { g ( e ^ { i \theta } ) } d \mu ( \theta ),$ ; confidence 0.405
233. ; $\mathcal{S} \text{q} ^ { 1 } = \beta$ ; confidence 0.405
234. ; $A = ( a _ { i , j } ) \in W$ ; confidence 0.404
235. ; $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ ; confidence 0.404
236. ; $\mathfrak{N}$ ; confidence 0.404
237. ; $\left[\begin{array} { l } { n } \\ { m } \end{array} \right] _ { q } = \frac { [ n ] _{q} ! } { [ m ] _{q} ! [ n - m ] _{q} ! } , [ m ]_{ q} = \frac { 1 - q ^ { m } } { 1 - q },$ ; confidence 0.404
238. ; $f , g \in L _ { 1 } ( \mathbf{R} _ { + } ; e ^ { - \beta x } / \sqrt { x } )$ ; confidence 0.404
239. ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } ^ { 2 } = \sum _ { n = 0 } ^ { \infty } n ! | f _ { n } | ^ { 2 } _ { H ^ {\bigotimes n}}.$ ; confidence 0.404
240. ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
241. ; $L _ { 0 , n } = L _ { 0 , n } ^ { 1 }$ ; confidence 0.404
242. ; $+ \psi ( z ^ { n } f ( D ) , z ^ { m } g ( D ) ) . C,$ ; confidence 0.404
243. ; $f \in L ^ { p } ( \partial D , d \vartheta / ( 2 \pi ) )$ ; confidence 0.404
244. ; $x _ { i j } ^ { v } \in \mathbf{R} ^ { n _ { 2 } }$ ; confidence 0.404
245. ; $\mathsf{S} ^ { 2 } \mathcal{E} \subset \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.404
246. ; $a _ { 2 } > 1$ ; confidence 0.404
247. ; $\vee \{ \psi _ { \mathfrak { A } } ^ { l } e : \phi \text { is true on } \mathfrak { A } \}.$ ; confidence 0.404
248. ; $i = 2 , \ldots , s,$ ; confidence 0.404
249. ; $c M : \mathcal{C} \rightarrow A$ ; confidence 0.404
250. ; $[0 , T]$ ; confidence 0.403
251. ; $\frac { 1 } { m } \sum _ { j = 1 } ^ { m } k _ { j }$ ; confidence 0.403
252. ; $\geq$ ; confidence 0.403
253. ; $( 1,1,1,1,1,1,1,1 , I _ { m } ) = ( 1,8 , I _ { m } )$ ; confidence 0.403
254. ; $\operatorname { exp } ( \Omega ( n ^ { 1 / d - 1 } ) )$ ; confidence 0.403
255. ; $X = X _ { 1 } \bigoplus \ldots \bigoplus X _ { n },$ ; confidence 0.403
256. ; $f ^ { \Delta ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \operatorname { min } \{ \varphi ( x , w ) , - f ( x ) \} ( w \in W ),$ ; confidence 0.403
257. ; $P$ ; confidence 0.403
258. ; $\{ ( 1 , t , t ^ { 2 } ) : t \in \operatorname {GF} ( q ) \} \cup \{ ( 0,0,1 ) \}$ ; confidence 0.403
259. ; $w _ { 1 } = ( 1 + c ) / 2$ ; confidence 0.403
260. ; $\mathbf{BQP}$ ; confidence 0.403
261. ; $\operatorname {Spec}( \mathbf{Z})$ ; confidence 0.403
262. ; $Q_{ m , j_{ g} } - \frac { 1 } { q ^ { m } } \in q \mathbf{Z} [ [ q ] ].$ ; confidence 0.403
263. ; $R _ { s } ^ { A } : = \operatorname { inf } \left\{ t : \begin{array} { l } \ {t \ \text{superharmonic on}\ \mathbf{R}^{n} , } \\ { t \geq s \ \text{on} \ A } \end{array} \right\}.$ ; confidence 0.403
264. ; $2 ^ { m }$ ; confidence 0.403
265. ; $h ^ { 0 } ( K_{ X} \otimes L ^ { * } ) = 0$ ; confidence 0.403
266. ; $\dot{z} _ { j } = z _ { i } f ( z _ { 1 } , \dots , z _ { k } ) , \quad i = 1 , \dots , n$ ; confidence 0.402
267. ; $f \in \mathbf{R} [ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.402
268. ; $[ l _ { m } \otimes \Lambda - A _ { 1 } ]$ ; confidence 0.402
269. ; $\Psi _ { B , B }$ ; confidence 0.402
270. ; $\bigcup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j} ( A ) \subseteq \bigcup _ { i = 1 } ^ { n } G _ { i } ( A ),$ ; confidence 0.402
271. ; $a_{i,j}$ ; confidence 0.402
272. ; $\operatorname { Bel } ( \emptyset ) = 0$ ; confidence 0.402
273. ; $\tilde { K } = \tilde { F } [ \lambda ]$ ; confidence 0.402
274. ; $Q = ( X _ { P } , <_{ Q} )$ ; confidence 0.402
275. ; $r ( I _ { 8 } , m ) = 240 \sigma _ { 3 } ( m ),$ ; confidence 0.402
276. ; $S _ { t }$ ; confidence 0.402
277. ; $\mathbf{Z}_{l,X} = ( ( \mathbf{Z} / l ^ { n } \mathbf{Z} ) _ { X } )_{n \in \mathbf{N}}$ ; confidence 0.402
278. ; $| \sum |$ ; confidence 0.402
279. ; $\omega = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \| x \| ^ { - n } x _ { j } d x _ { 1 } \wedge \ldots \wedge d x _ { j - 1 } \wedge d x _ { j + 1 } \wedge \ldots \wedge d x _ { n }$ ; confidence 0.401
280. ; $k \in \mathbf{R} ^ { n }$ ; confidence 0.401
281. ; $\alpha _ { 1} , \dots , \alpha _ { q } \in \mathcal{F} ( S )$ ; confidence 0.401
282. ; $\mu | _ { Y \backslash E } : Y \backslash E \rightarrow X \backslash \mu ( E )$ ; confidence 0.401
283. ; $a _ { i } \neq e$ ; confidence 0.401
284. ; $( M ^ { \perp } \bigcup N ^ { \perp } ) ^ { \perp } = M ^ { \perp \perp } \bigcap N ^ { \perp \perp }.$ ; confidence 0.401
285. ; $u$ ; confidence 0.401
286. ; $\| T \| < \nu ( A )$ ; confidence 0.401
287. ; $d \omega _ { 1 } ( \lambda ) = \frac { \prod _ { i = 1 } ^ { g } ( \lambda - \alpha _ { i } ) } { \sqrt { R _ { g } ( \lambda ) } } d \lambda \sim$ ; confidence 0.401
288. ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
289. ; $\rightarrow$ ; confidence 0.401
290. ; $X ( t _ { 0 } ) = X _ { 0 }.$ ; confidence 0.401
291. ; $a \in \mathcal{A} ^ { - 1 }$ ; confidence 0.401
292. ; $d f _ { t , s }$ ; confidence 0.401
293. ; $f \in H _ { p } ^ { r } ( \Omega )$ ; confidence 0.400
294. ; $M ( \mu ) = U ( \mathfrak { g } ) \otimes_{ U ( \mathfrak { b } )} \mathbf{C} ( \mu )$ ; confidence 0.400
295. ; $\mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.400
296. ; $f ( q , p ) \in L ^ { 2 } ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.400
297. ; $\phi ( x _ { 1 } , \dots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \dots , x _ { n } , z ) = 0 ) ),$ ; confidence 0.400
298. ; $s _ { j } = \sum _ { \text{l} = 1 } ^ { M } ( z _ { 1 } ^ { ( \text{l} ) } ) ^ { j } , \quad j = 1 , \ldots , M,$ ; confidence 0.400
299. ; $\tau _ { n } = \frac { c - d } { c + d } = \frac { S } { \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right) } = \frac { 2 S } { n ( n - 1 ) }$ ; confidence 0.400
300. ; $R \in \mathbf{R}$ ; confidence 0.400
Maximilian Janisch/latexlist/latex/NoNroff/63. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/63&oldid=49770