Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/46

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. i130060146.png ; $\int _ { 0 } ^ { \infty } x ^ { n } | q ( x ) | d x = o ( n ^ { b n } )$ ; confidence 0.714

2. d1101301.png ; $S = \{ p _ { 1 } , \dots , p _ { n } \}$ ; confidence 0.714

3. b12005059.png ; $\mathcal{M} ( \mathcal{H} _ { b } ( E ) )$ ; confidence 0.714

4. b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714

5. f120150143.png ; $S \in F ( X , Y )$ ; confidence 0.714

6. b01574017.png ; $\operatorname { Lip } \alpha$ ; confidence 0.714

7. c120180464.png ; $\operatorname { dim } N _ { 0 } = \operatorname { dim } N + 1$ ; confidence 0.714

8. b12029012.png ; $\varepsilon _ { X } ^ { A }$ ; confidence 0.714

9. a12018045.png ; $\Delta S _ { n + 1 } / \Delta S _ { n } \notin [ a , b ]$ ; confidence 0.713

10. q12008064.png ; $+ \frac { R \left( \rho - \sum _ { p \in E } \rho _ { p } ^ { 2 } + \sum _ { p \in \text{G,L} } \rho _ { p } ^ { 2 } \right) } { 2 ( 1 - \rho ) },$ ; confidence 0.713

11. a12002036.png ; $Q$ ; confidence 0.713

12. c120010101.png ; $L _ { \rho } ( a ; w ) = \sum _ { j , k } \rho _ { j \overline { k } } ( a ) w _ { j } \overline { w } _ { k }$ ; confidence 0.713

13. g13007017.png ; $F ( a ) \in \sigma ( a )$ ; confidence 0.713

14. d13013082.png ; $\hbar \nmid 2 e$ ; confidence 0.713

15. w13006025.png ; $\frac { 1 } { 12 \pi ^ { 2 } } \omega _{\text{WP}}.$ ; confidence 0.713

16. p1201405.png ; $0 < a _ { 0 } < a _ { 1 }$ ; confidence 0.713

17. a12028051.png ; $\langle \, .\, ,\, . \, \rangle$ ; confidence 0.713

18. f04049031.png ; $\chi ^ { 2 }_{m}$ ; confidence 0.713

19. s13038021.png ; $\operatorname { Int } _ { \rho } A$ ; confidence 0.713

20. a01209048.png ; $x ^ { n } = 0$ ; confidence 0.713

21. o13004020.png ; $M = \mathbf{R} ^ { d }$ ; confidence 0.713

22. a13007071.png ; $Q ( x )$ ; confidence 0.713

23. y12001077.png ; $\square _ { A } ^ { A } \mathcal{C}$ ; confidence 0.713

24. f120080198.png ; $\hat { K } = W ^ { * } ( G )$ ; confidence 0.713

25. b12022090.png ; $a ( \xi ) = v$ ; confidence 0.713

26. n120020116.png ; $am \otimes m + m _ { 1 } B _ { 1 } + \ldots + m _ { d } B _ { d } + C$ ; confidence 0.713

27. b12043038.png ; $k [ x ]$ ; confidence 0.713

28. c13004021.png ; $\operatorname { Re } s > 1 , a \in \mathbf{C} \backslash \mathbf{Z} ^{ - } _ { 0 }.$ ; confidence 0.713

29. j12002052.png ; $\mathcal{M} ^ { p }$ ; confidence 0.712

30. q12001065.png ; $J ^ { 2 } = \operatorname{id}$ ; confidence 0.712

31. t12020097.png ; $P _ { m , n } = \sum _ { j = 0 } ^ { n - 1 } \left( \begin{array} { c } { m + j } \\ { j } \end{array} \right) 2 ^ { j }$ ; confidence 0.712

32. d12002040.png ; $( \operatorname{S} )$ ; confidence 0.712

33. o130060140.png ; $\mathfrak{E} ( \mu )$ ; confidence 0.712

34. a12007073.png ; $\lambda \in S _ { \theta _ { 0 } } , t \in [ 0 , T ];$ ; confidence 0.712

35. t1201308.png ; $M = S _ { 1 } ^ { - 1 } S _ { 2 },$ ; confidence 0.712

36. t12019018.png ; $\operatorname { lim } _ { r \rightarrow \infty } r \cdot t ( r + 1 , r ) = \infty$ ; confidence 0.712

37. j130040119.png ; $c_{i , j}$ ; confidence 0.712

38. e12019074.png ; $b _ { 3 }$ ; confidence 0.712

39. l05700074.png ; $M ^ { 0 } N \equiv N$ ; confidence 0.712

40. a01021033.png ; $\pi$ ; confidence 0.712

41. w13017016.png ; $y _ { t } = \sum _ { j = 0 } ^ { \infty } K _ { j } \varepsilon _ { t - j },$ ; confidence 0.712

42. w120110153.png ; $a _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712

43. d12006011.png ; $f _ { t } ( x , t ) = \sum _ { m = - M } ^ { m = N } u _ { m } ( x , t ) T ^ { m } ( f ) , \quad t \in \mathbf{R},$ ; confidence 0.712

44. d03006018.png ; $Q _ { x _ { 0 } } ^ { T } = \{ | x - x _ { 0 } | < a ( T - t ) , t \geq 0 \},$ ; confidence 0.712

45. s12034051.png ; $c _ { 1 } \in H ^ { 2 } ( M ; \mathbf{Z} )$ ; confidence 0.712

46. b130290202.png ; $t _ { i } \leq t_{i + 1} + 1$ ; confidence 0.712

47. e12024045.png ; $\square ( E / \mathbf{Q} )$ ; confidence 0.712

48. a12016065.png ; $\mu _ { t }$ ; confidence 0.712

49. n1200104.png ; $( M , g ) = ( \mathbf{R} ^ { 2 } \backslash \{ 0 \} , 2 / ( u ^ { 2 } + v ^ { 2 } ) d u d v )$ ; confidence 0.712

50. k13007023.png ; $\operatorname{L} ^ { 2 }$ ; confidence 0.712

51. l06119027.png ; $x \in \mathbf{R} ^ { 3 }$ ; confidence 0.712

52. b120040128.png ; $x \mapsto \int _ { \Omega } x x ^ { \prime } d \mu$ ; confidence 0.712

53. n12003029.png ; $o _ { A } : 1 \rightarrow L A$ ; confidence 0.712

54. w12003083.png ; $X ^ { * * * }$ ; confidence 0.711

55. m0622208.png ; $\Omega ^ { J }$ ; confidence 0.711

56. b12016046.png ; $x _ { 1 } ^ { \prime } = p _ { 1 } q _ { 1 } ,\, x _ { 2 } ^ { \prime } = p _ { 1 } q _ { 2 },$ ; confidence 0.711

57. a120160167.png ; $k_{i j t}$ ; confidence 0.711

58. w12005032.png ; $A = \mathbf{R} .1 \oplus N$ ; confidence 0.711

59. a130240349.png ; $\mathbf{Z}_{3}$ ; confidence 0.711

60. a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right),$ ; confidence 0.711

61. a13024039.png ; $p \times p$ ; confidence 0.711

62. d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { \text{M} },$ ; confidence 0.711

63. l1202006.png ; $A _ { i } \cap ( - A _ { i } ) = \emptyset$ ; confidence 0.711

64. d12029037.png ; $( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.711

65. k05584035.png ; $\mathcal{K} _ { + }$ ; confidence 0.711

66. c12028018.png ; $\pi ( \mathcal{B} C ) \cong C$ ; confidence 0.711

67. n067520385.png ; $\Lambda \neq 0$ ; confidence 0.711

68. j12002031.png ; $\tilde { \varphi }_{2}$ ; confidence 0.711

69. c12028066.png ; $K \times L$ ; confidence 0.711

70. s13036035.png ; $\mathbf{n} ( x )$ ; confidence 0.711

71. c12003019.png ; $f : I \times G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.711

72. f11016031.png ; $b _ { 1 } , \dots , b _ { t }$ ; confidence 0.710

73. e1201807.png ; $| a _ { n } | \rightarrow \infty$ ; confidence 0.710

74. s13013019.png ; $L | F$ ; confidence 0.710

75. j120020215.png ; $I \backslash \cup I_{j}$ ; confidence 0.710

76. a12012082.png ; $\langle x _ { t } ^ { \prime } , y _ { t } ^ { \prime } , c _ { t } ^ { \prime } \rangle$ ; confidence 0.710

77. c02007038.png ; $L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.710

78. a12012091.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c_{ t} \leq y_0;$ ; confidence 0.710

79. b12034025.png ; $z \notin 1 / 3 . D ^ { \circ }$ ; confidence 0.710

80. a130240362.png ; $\mathbf{Z}_{2}$ ; confidence 0.710

81. t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710

82. b12042020.png ; $W \otimes V$ ; confidence 0.710

83. i12006028.png ; $x \in X _ { P }$ ; confidence 0.710

84. b13029094.png ; $\operatorname{l} _ { A } ( H _ { \text{m} } ^ { i } ( A ) ) = h _ { i }$ ; confidence 0.710

85. s13047019.png ; $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$ ; confidence 0.710

86. g043270124.png ; $\alpha = \alpha _ { 0 }$ ; confidence 0.709

87. f12019065.png ; $H = \{ u \in G : \omega ^ { u } = \omega \}$ ; confidence 0.709

88. s13045052.png ; $- 3 \mathsf{P} [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) < 0 ],$ ; confidence 0.709

89. q13005015.png ; $h \in \operatorname {QS} ( \mathbf{R} )$ ; confidence 0.709

90. t12006065.png ; $N = Z$ ; confidence 0.709

91. a11030033.png ; $[ \theta ( d v _ { \alpha } ) ] = \mathcal{K} _ { n _ { \alpha } } [ f _ { \alpha } ]$ ; confidence 0.709

92. a13032024.png ; $\mathsf{E} ( Y ) = \theta$ ; confidence 0.709

93. c1202208.png ; $p : ( X , * ) \rightarrow ( * , * )$ ; confidence 0.709

94. a13024094.png ; $\gamma$ ; confidence 0.709

95. a1201509.png ; $\operatorname {Ad}( g ) : \mathfrak { g } \rightarrow \mathfrak { g }$ ; confidence 0.709

96. b13003043.png ; $\operatorname { Ker } ( y ) = \{ x \in V ^ { \sigma } : Q _ { y } x = 0 \}$ ; confidence 0.709

97. l05700094.png ; $\mathbf{true}\equiv \lambda x y \cdot x$ ; confidence 0.709

98. s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709

99. a130240233.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { r } d _ { i } z _ { i }$ ; confidence 0.709

100. j13007026.png ; $f \in \operatorname { Hol } ( \Delta , \mathbf{C} )$ ; confidence 0.709

101. e12005042.png ; $w , g ( w ) , g ^ { 2 } ( w ), \dots$ ; confidence 0.709

102. e13007088.png ; $\sum _ { i = 1 } ^ { k } m _ { i } ^ { h } = \sum _ { i = 1 } ^ { k } n _ { i } ^ { h }$ ; confidence 0.709

103. m13002064.png ; $\tilde { M } _ { k }$ ; confidence 0.709

104. b12046049.png ; $\chi ( h ) = \chi _ { e } ( h ) + \chi_{f }( h )$ ; confidence 0.709

105. j13007032.png ; $z \in \Delta$ ; confidence 0.709

106. g12004057.png ; $x \xi : = x _ { 1 } \xi _ { 1 } + \ldots + x _ { n } \xi _ { n }$ ; confidence 0.708

107. c02253010.png ; $t = b$ ; confidence 0.708

108. f12008018.png ; $M ( \hat { G } )$ ; confidence 0.708

109. q13003017.png ; $P _ { 0 } | 0 \rangle = | 0 \rangle$ ; confidence 0.708

110. i13005020.png ; $t ( - k ) = \overline { t ( k ) }$ ; confidence 0.708

111. f13001068.png ; $\mathbf{F} _ { 2 }$ ; confidence 0.708

112. m1201101.png ; $h : F \rightarrow F$ ; confidence 0.708

113. f13028024.png ; $A \mathbf{x} \in \tilde { B }$ ; confidence 0.708

114. s12004074.png ; $s _ { \lambda } = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } ^ { \lambda } p _ { \mu }.$ ; confidence 0.708

115. a120160171.png ; $x _ { j t }$ ; confidence 0.708

116. w120030105.png ; $x _ { i } ^ { * } ( x _ { j } ) = \delta _ { i j }$ ; confidence 0.708

117. g13001087.png ; $\omega ^ { c } + \omega ^ { d } = \omega ^ { c } ( 1 + \omega ^ { d - c } )$ ; confidence 0.708

118. t13011023.png ; $\chi ( T _ { A } ) = \left\{ N _ { B } : N \bigotimes _ { B } T = 0 \right\}.$ ; confidence 0.708

119. h12002053.png ; $H _ { \phi }$ ; confidence 0.708

120. s13041041.png ; $\sum _ { j = n - k } ^ { n + 1 } b _ { n , j } P _ { j } ( x ) = \sum _ { j = n - k } ^ { n + 1 } \beta _ { n + 1 , j } Q _ { j } ( x ).$ ; confidence 0.708

121. c130070231.png ; $T \in \Re ( C )$ ; confidence 0.707

122. d13003020.png ; $a \in \mathbf{R} ^ { + }$ ; confidence 0.707

123. a130240366.png ; $\mathbf{M} _ { \mathcal{H} } = \mathbf{Z} _ { 1 } ^ { \prime }\mathbf{ Z} _ { 1 }$ ; confidence 0.707

124. i1200805.png ; $\mathcal{H} = - \sum _ { i < j = 1 } ^ { N } J _ { i j } S _ { i } S _ { j } - H \sum _ { i = 1 } ^ { N } S _ { i }.$ ; confidence 0.707

125. d130080104.png ; $a \in \partial \mathcal{D}$ ; confidence 0.707

126. k055840104.png ; $K _ { \mathcal{L} }$ ; confidence 0.707

127. a011300133.png ; $N_{i}$ ; confidence 0.707

128. c12001028.png ; $E \subset \mathbf{C} ^ { n }$ ; confidence 0.707

129. e13004050.png ; $\overset{\rightharpoonup}{x} . \overset{\rightharpoonup}{ v } > 0$ ; confidence 0.707

130. w12021043.png ; $A _ { i } B _ { m } A _ { j } ^ { T } = A _ { j } B _ { m } A _ { i } ^ { T }$ ; confidence 0.707

131. d13017068.png ; $a = 0.6197$ ; confidence 0.707

132. a11001013.png ; $A \in \mathbf{R} ^ { n \times n }$ ; confidence 0.707

133. c020540283.png ; $K = \mathbf{R}$ ; confidence 0.707

134. n06663040.png ; $\Omega \neq \emptyset$ ; confidence 0.707

135. l13010062.png ; $a ( x , \alpha , p ) : = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { 0 } ^ { \infty } t ^ { n - 1 } e ^ { - i t p } b ( x , t , \alpha ) d t,$ ; confidence 0.706

136. b13009029.png ; $\Omega \subset \mathbf{R} ^ { n }$ ; confidence 0.706

137. d0300905.png ; $F _ { \nu } + R _ { \nu } - m _ { \nu } w _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.706

138. h12005011.png ; $u ( x ; 0 ) = \Phi ( x ) , u _ { ; m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0,$ ; confidence 0.706

139. f13019022.png ; $\frac { d ^ { 2 } C _ { j } } { d x ^ { 2 } } ( x _ { i } ) = \left\{ \begin{array} { l l } { - \frac { 2 N ^ { 2 } + 1 } { 6 } } & { \text { for } i = j, } \\ { \frac { 1 } { 2 } \frac { ( - 1 ) ^ { i + j + 1 } } { \operatorname { sin } ^ { 2 } \frac { x _ { i } - x _ { j } } { 2 } } } & { \text { for } i \neq j, } \end{array} \right.$ ; confidence 0.706

140. i12008025.png ; $F = - \frac { k _ { B } T \operatorname { ln } Z } { N } , \quad Z = \operatorname { Tr } \operatorname { exp } \left( - \frac { \mathcal{H} } { k _ { B } T } \right).$ ; confidence 0.706

141. b12022019.png ; $u \in \mathbf{R} ^ { N }$ ; confidence 0.706

142. d12005033.png ; $D = \operatorname{Dbx} _ { f }$ ; confidence 0.706

143. m12001057.png ; $\operatorname { Re } \langle u - v , j \rangle$ ; confidence 0.706

144. c13021014.png ; $a _ { 1 } = 1 , a _ { 2 } = 2$ ; confidence 0.706

145. t12005048.png ; $\operatorname { dim } ( \Gamma _ { X } \cap ( \mathbf{R} ^ { n } \times \{ 0 \} ) ) = i$ ; confidence 0.706

146. i13004016.png ; $\sum _ { k = 0 } ^ { \infty } ( k + 1 ) \left| \Delta ^ { 2 } \alpha _ { k } \right| < \infty.$ ; confidence 0.706

147. x12002019.png ; $\delta ( x ) = \operatorname { ad } _ { q } ( x ) = [ q , x ]$ ; confidence 0.706

148. a1302309.png ; $f \in H$ ; confidence 0.705

149. b13028050.png ; $D _{*} H _{*} \Omega ^ { \infty } X$ ; confidence 0.705

150. q12008013.png ; $\mathsf{E} [ T _ { p } ] = \mathsf{E} [ W _ { p } ] + b _ { p }$ ; confidence 0.705

151. t13014069.png ; $M _ { i j } ^ { \beta } \in \mathbf{M} _ { v _ { j } \times v _ { i } } ( K ) _ { \beta }$ ; confidence 0.705

152. a12008076.png ; $u _ { 0 } \in D ( A )$ ; confidence 0.705

153. f120230129.png ; $[ K , L ]$ ; confidence 0.705

154. a13027012.png ; $P _ { n } x \rightarrow x$ ; confidence 0.705

155. i12008065.png ; $T _ { c } > 0$ ; confidence 0.705

156. a13032013.png ; $\mathsf{E} _ { \theta } ( N ) = \sum _ { k = 0 } ^ { n - 1 } \mathsf{P} _ { \theta } ( N > k ) = \sum _ { k = 0 } ^ { n - 1 } ( 1 - \theta ) ^ { k } =$ ; confidence 0.705

157. l13009010.png ; $P _ { W } ( \delta , \lambda )$ ; confidence 0.705

158. a130040352.png ; $\operatorname{CPC}$ ; confidence 0.705

159. i13001047.png ; $\overline { d } _ { \lambda } ( A ) \leq \overline { d } _ { \mu } ( A )$ ; confidence 0.705

160. s13050031.png ; $X \in \mathcal{F}$ ; confidence 0.705

161. m12019012.png ; $\times \Gamma \left( \frac { 1 } { 2 } - k - i \tau \right) \int _ { 1 } ^ { \infty } P _ { i \tau - 1/2 } ^ { ( k ) } ( x ) f ( x ) d x , f ( x ) = \int _ { 0 } ^ { \infty } P _ { i \tau -1/2} ^ { ( k ) } ( x ) F ( \tau ) d \tau.$ ; confidence 0.705

162. t13007031.png ; $b _ { 1 } , b _ { 2 } , \dots$ ; confidence 0.705

163. w1200303.png ; $K = \{ x _ { n } / n : n \in \mathbf{N} \} \cup \{ 0 \}$ ; confidence 0.705

164. e12016050.png ; $J ^ { \prime } \mapsto M ^ { \prime t } J ^ { \prime } M ^ { \prime }$ ; confidence 0.705

165. l120100101.png ; $V = - V _ { - }$ ; confidence 0.705

166. k05584072.png ; $f , g \in L _ { 2 , r }$ ; confidence 0.705

167. a13032020.png ; $\mathsf{E} ( Y ) \mathsf{E} ( N ) = \mathsf{E} ( S _ { N } ).$ ; confidence 0.705

168. b12009044.png ; $- \frac { 1 + a ^ { 2 } } { m } \tau ^ { - m } =$ ; confidence 0.705

169. e120070100.png ; $p _ { h } \in P ( k )$ ; confidence 0.705

170. l12010083.png ; $\Phi = ( N ! ) ^ { - 1 / 2 } \operatorname { det } f _ { j } ( x _ { k } ) | _ { j , k = 1 } ^ { N }$ ; confidence 0.704

171. a110680168.png ; $x \in S$ ; confidence 0.704

172. c02094072.png ; $\mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.704

173. h13005044.png ; $\int _ { X } ^ { \infty } d s$ ; confidence 0.704

174. l12004024.png ; $f _ { i + 1 / 2 }$ ; confidence 0.704

175. z130100119.png ; $V _ { 0 } = \emptyset ; V _ { \alpha } = \bigcup _ { \beta < \alpha } \mathcal{P} ( V _ { \beta + 1 } ) ; \text { and } V = \bigcup _ { \alpha } V _ { \alpha }.$ ; confidence 0.704

176. t120140167.png ; $B f = \Psi _ { 2 } ^ { - 1 } \mathcal{P} _ { + } \overline { \Lambda } \mathcal{P} _ { + } \overline { \Psi } \square ^ { - 1 }_{1} f,$ ; confidence 0.704

177. y120010131.png ; $Z \subseteq X \times X$ ; confidence 0.704

178. l12003046.png ; $T _ { E } : \mathcal{U} \rightarrow \mathcal{U} $ ; confidence 0.704

179. n06663082.png ; $\| f \| = \| f \| _ { L _ { p } ( \Omega ) } + M _ { f }$ ; confidence 0.704

180. f120230117.png ; $- ( - 1 ) ^ { ( q + k _ { 1 } ) k _ { 2 } } \mathcal{L} ( K _ { 2 } ) \omega \bigwedge K _ { 1 } +$ ; confidence 0.704

181. b13001080.png ; $G = \operatorname{SL} ( 2 , \mathbf{Q} )$ ; confidence 0.704

182. a12031019.png ; $M _ { \operatorname{sa} }$ ; confidence 0.704

183. o0680806.png ; $\dot { q } _ { i } = A _ { i \alpha } q _ { \alpha } + B _ { i \alpha \beta } q _ { \alpha } q _ { \beta } + \frac { \partial } { \partial z } K ( z ) \frac { \partial q _ { i } } { \partial z },$ ; confidence 0.704

184. k12005062.png ; $\mathbf{P}^{1}$ ; confidence 0.704

185. a13029072.png ; $\tilde { f } : Q \rightarrow Q$ ; confidence 0.704

186. a12007082.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) - \frac { d } { d t } A ( t ) ^ { - 1 } | _ { t = 0 } A ( 0 ) u _ { 0 } \in \overline { D ( A ( 0 ) ) }.$ ; confidence 0.704

187. h0479402.png ; $g : Y \rightarrow X$ ; confidence 0.703

188. b12005051.png ; $\mathcal{P} ( \square ^ { n } E ) \rightarrow \mathcal{P} ( \square ^ { n } E ^ { * * } )$ ; confidence 0.703

189. b11021028.png ; $x , y \in \mathbf{R} ^ { n }$ ; confidence 0.703

190. z13007056.png ; $U \in \operatorname{SGL} _ { n } ( \mathbf{Z} G )$ ; confidence 0.703

191. e12012071.png ; $\{ y _ { i } : i = 1 , \dots , n \} = Y _ { \operatorname{obs} }$ ; confidence 0.703

192. c02489060.png ; $K _ { q }$ ; confidence 0.703

193. t120070131.png ; $\omega : L _ { i } \rightarrow L _ { - i }$ ; confidence 0.703

194. f13009024.png ; $U _ { n } ( x , y )$ ; confidence 0.703

195. k05545027.png ; $| x | \rightarrow \infty$ ; confidence 0.702

196. w12008028.png ; $P = - i \overset{\rightharpoonup}{ \nabla }$ ; confidence 0.702

197. c130070202.png ; $\tau \in T$ ; confidence 0.702

198. h04601091.png ; $\tau ( W \bigcup W ^ { \prime } , M _ { 0 } ) = \tau ( W , M _ { 0 } ) + \tau ( W ^ { \prime } , M _ { 1 } ).$ ; confidence 0.702

199. b12040038.png ; $G \times^{\varrho} F$ ; confidence 0.702

200. s1305909.png ; $\Lambda _ { 2 m } = \Lambda - m , m$ ; confidence 0.702

201. t12001046.png ; $\lambda = \operatorname { dim } ( \mathcal{S} ) - 1$ ; confidence 0.702

202. c12030016.png ; $S ^ { * } S ^ { \prime } \in \mathbf{C}I$ ; confidence 0.702

203. t130050155.png ; $a : = \pi ( A )$ ; confidence 0.702

204. b130200170.png ; $\alpha _ { i j } = 2$ ; confidence 0.702

205. k13007043.png ; $\| u \|_{\infty}$ ; confidence 0.702

206. m13001015.png ; $\hat { f }^{\prime}$ ; confidence 0.702

207. w12018010.png ; $\mathsf{E} W ( A ) W ( B ) = m ( A \cap B )$ ; confidence 0.702

208. e12002053.png ; $\operatorname { map } _ { * } ( X \wedge S ^ { 1 } , Y ) \approx \operatorname { map } _ { * } ( X , \operatorname { map } _ { * } ( S ^ { 1 } , Y ) )$ ; confidence 0.702

209. b1108106.png ; $D _ { t }$ ; confidence 0.702

210. a12028021.png ; $z \mapsto z ^ { n }$ ; confidence 0.701

211. d031830354.png ; $r = s$ ; confidence 0.701

212. a1201605.png ; $\sum _ { i } \sum _ { t } u _ { i } ( t ) \leq B (\text{budget constraint}),$ ; confidence 0.701

213. a12004023.png ; $x _ { 0 }$ ; confidence 0.701

214. f12021025.png ; $\operatorname { Re } \lambda _ { 1 } \geq \ldots \geq \operatorname { Re } \lambda _ { \nu }.$ ; confidence 0.701

215. m12010064.png ; $( G , c )$ ; confidence 0.701

216. y12001041.png ; $R _ { V }$ ; confidence 0.700

217. f12021083.png ; $= \frac { ( m _ { j } + l ) ! } { l ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { j } } + \ldots,$ ; confidence 0.700

218. b1203204.png ; $\| . \| p$ ; confidence 0.700

219. q120050101.png ; $( x ^ { k } ) _ { k \in \mathbf{N} }$ ; confidence 0.700

220. s1203205.png ; $p ( x ) = \overline{0}$ ; confidence 0.700

221. e03540032.png ; $2 ^ { m - 1 }$ ; confidence 0.700

222. o12005043.png ; $l ^ { \infty }$ ; confidence 0.700

223. l11003028.png ; $\mathcal{D} \subseteq \operatorname{ ca} ( \Omega , \mathcal{F} )$ ; confidence 0.700

224. b120210113.png ; $\operatorname { Ext } _ { a } ^ { i } ( M , N ) = \operatorname { Ker } \delta _ { i + 1 } ^ { \prime } / \operatorname { Im } \delta _ { i } ^ { \prime }$ ; confidence 0.700

225. a01406079.png ; $B ^ { * }$ ; confidence 0.700

226. e12009025.png ; $F ^ { \mu \nu_{ , \nu} } = F ^ { \mu \nu_{ , , \nu}} = S ^ { \mu }.$ ; confidence 0.700

227. h11001024.png ; $.\operatorname { exp } \left( - \sum _ { p \leq x } \frac { 1 } { p } . ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i \alpha _ { 0 } } ) ) \right).$ ; confidence 0.700

228. h1300606.png ; $\tau \in H$ ; confidence 0.700

229. s1301404.png ; $\mathbf{x} = \{ x _ { 1 } , \dots , x _ { l } \}$ ; confidence 0.700

230. c120180322.png ; $W ( g ) = R ( g ) - g .A ( g ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E} $ ; confidence 0.700

231. t130050102.png ; $\sigma_{\text{l}}$ ; confidence 0.700

232. f1202007.png ; $\left( \begin{array} { c c c c } { 0 } & { \square } & { \square } & { - a _ { 0 } } \\ { 1 } & { \ddots } & { \square } & { - a _ { 1 } } \\ { \square } & { \ddots } & { 0 } & { \vdots } \\ { \square } & { \square } & { 1 } & { - a _ { n - 1 } } \end{array} \right)$ ; confidence 0.700

233. f120080112.png ; $\| \varphi \| _ { \text{S} } : = \| M_{ \varphi }\|$ ; confidence 0.700

234. m13011078.png ; $v _ { i } = \frac { D u _ { i } } { D t }.$ ; confidence 0.700

235. i13006064.png ; $\operatorname{ ind } S ( k ) : = ( 1 / 2 \pi ) \int _ { - \infty } ^ { \infty } d \operatorname { ln } S ( k )$ ; confidence 0.700

236. s13054033.png ; $y ( a ) = x _ { 21 } ( a )$ ; confidence 0.699

237. h13005043.png ; $\partial ^ { - 1_{x} }$ ; confidence 0.699

238. e12016034.png ; $\operatorname { Re } ( \mathcal{E} ) \nabla ^ { 2 } \mathcal{E} = \nabla \mathcal{E} . \nabla \mathcal{E},$ ; confidence 0.699

239. b12005039.png ; $\phi : \mathcal{A} \rightarrow \mathbf{C}$ ; confidence 0.699

240. e12021043.png ; $w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w } ) } , \quad z \in \mathbf{C},$ ; confidence 0.699

241. m12026013.png ; $f _ { j } = \sum _ { i } c _ { i } g _ {i j }.$ ; confidence 0.699

242. q1200303.png ; $L : A \rightarrow \operatorname { Fun } _ { q } ( G ) \otimes A$ ; confidence 0.699

243. b120040115.png ; $X ^ { * }_{c}$ ; confidence 0.699

244. t12005091.png ; $( j _ { 1 } , \dots , j _ { s } )$ ; confidence 0.699

245. c12007035.png ; $\{ H ^ { n } ( \mathcal{C} , - ) : n \geq 0 \}$ ; confidence 0.699

246. t12002014.png ; $\mathcal{T} ^ { + } = \bigcap _ { N \geq 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699

247. f1302803.png ; $A \mathbf{x} \leq \mathbf{b}$ ; confidence 0.699

248. d03263080.png ; $\| x \|$ ; confidence 0.699

249. f12021065.png ; $\left( \frac { \partial } { \partial \lambda } \right) ^ { ( n _ { i } - 1 ) } u ( z , \lambda _ { i } ) = ( \operatorname { log } z ) ^ { n _ { i } - 1 } z ^ { \lambda _ { i } } +\dots$ ; confidence 0.699

250. p0745207.png ; $B \subseteq P$ ; confidence 0.699

251. f13019014.png ; $P _ { N } u = \sum _ { k = - N } ^ { N } a _ { k } e ^ { i k x }$ ; confidence 0.699

252. l05700087.png ; $F \mathbf{c} _ { k _ { 1 } } \mathbf{c} _ { k _ { 2 } } = \mathbf{c} _ { f ( k _ { 1 } , k _ { 2 } )}$ ; confidence 0.698

253. c02285052.png ; $d ( . , . )$ ; confidence 0.698

254. w12011095.png ; $\operatorname { exp } ( i \pi \langle S x , x \rangle )$ ; confidence 0.698

255. m13023056.png ; $v _ { j } \in \Sigma$ ; confidence 0.698

256. f13001031.png ; $\mathbf{F} _ { q ^ { i } }$ ; confidence 0.698

257. b12022036.png ; $\psi ( \rho _ { f } , T _ { f } ) = \rho _ { f }$ ; confidence 0.698

258. e12009011.png ; $\nabla \times$ ; confidence 0.698

259. s13002028.png ; $G ^ { * } ( d u ) = | \langle v , N _ { x } \rangle | d t d v d x.$ ; confidence 0.698

260. d1202501.png ; $U \subseteq \mathbf{R} ^ { n }$ ; confidence 0.698

261. a13024058.png ; $j = 1 , \ldots , J$ ; confidence 0.698

262. b12051039.png ; $x _ { + } = x _ { c } - ( \nabla ^ { 2 } f ( x _ { c } ) ) ^ { - 1 } \nabla f ( x _ { c } ),$ ; confidence 0.698

263. v12004056.png ; $\chi _ { l } ^ { \prime } ( G ) \leq \Delta ( G ) + 1$ ; confidence 0.698

264. i13005083.png ; $\overline { \mathbf{C} } _ { + }$ ; confidence 0.698

265. d13008068.png ; $D ( a , R )$ ; confidence 0.698

266. s13051086.png ; $\sigma ( \mathbf{u} ) = g ( u _ { 1 } ) \oplus \ldots \oplus g ( u _ { m } )$ ; confidence 0.698

267. h046010110.png ; $( W ^ { \prime } ; M _ { 0 } , M _ { 1 } ^ { \prime } )$ ; confidence 0.698

268. p120170113.png ; $( \mathcal{A} + i \mathcal{B} ) x = 0 \Leftrightarrow \mathcal{A} x = 0 = \mathcal{B} x$ ; confidence 0.698

269. b12002012.png ; $\Gamma _ { n } ^ { - 1 } ( t ) = 2 t - \Gamma _ { n } ( t ) + o \left( n ^ { - 1 / 2 } \right)$ ; confidence 0.698

270. p07402071.png ; $1 , \ldots , r$ ; confidence 0.698

271. c120010162.png ; $f ( z ) = \sum _ { k = 1 } ^ { \infty } \frac { c _ { k } } { ( 1 + \langle z , \alpha _ { k } \rangle ) ^ { n } },$ ; confidence 0.698

272. e12026085.png ; $\{ \operatorname { log } f : f \in S \}$ ; confidence 0.697

273. m06533023.png ; $A _ { 1 } , \dots , A _ { k }$ ; confidence 0.697

274. g13007012.png ; $F ( a ) \neq 0$ ; confidence 0.697

275. d11022053.png ; $\int _ { a } ^ { \phi } ( p y ^ { \prime 2 } - q y ^ { 2 } )$ ; confidence 0.697

276. f12024061.png ; $\psi : J _ { t } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.697

277. m1202309.png ; $f _ { t } ( x ) = \operatorname { inf } _ { y \in H } \left( f ( y ) + \frac { 1 } { 2 t } \| x - y \| ^ { 2 } \right) , \quad x \in H.$ ; confidence 0.697

278. o11003050.png ; $b \in D$ ; confidence 0.697

279. m13020017.png ; $\alpha : M \times G \rightarrow M$ ; confidence 0.697

280. k055840297.png ; $\tilde { \mathcal{K} } \supset \mathcal{K}$ ; confidence 0.697

281. m13020011.png ; $\gamma ( Y ) = [ i \gamma \omega ]$ ; confidence 0.697

282. l057000211.png ; $( \lambda x . x x ) ( \lambda x . x x )$ ; confidence 0.697

283. g13002014.png ; $e ^ { \beta z }$ ; confidence 0.697

284. e12026020.png ; $F = F ( \mu ) = \{ \mathsf{P} ( \theta , \mu ) : \theta \in \Theta ( \mu ) \},$ ; confidence 0.697

285. w12005065.png ; $\operatorname{GL} ( A )$ ; confidence 0.697

286. t12008044.png ; $( \epsilon x _ { 1 } , \epsilon y _ { 1 } )$ ; confidence 0.697

287. q120070117.png ; $\epsilon \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) = \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right)$ ; confidence 0.697

288. p12012037.png ; $C _ { 36 }$ ; confidence 0.697

289. j13004049.png ; $P _ { L } ( v , z ) = \sum _ { i = m } ^ { N } P _ { i } ( v ) z ^ { i }$ ; confidence 0.697

290. d13008065.png ; $E ( a , R )$ ; confidence 0.696

291. s12022068.png ; $\mathbf{C} \times ( \mathbf{C} \backslash ( - \infty , 0 ) )$ ; confidence 0.696

292. f12008064.png ; $C _ { 0 } ( G )$ ; confidence 0.696

293. l0570209.png ; $F _ { n+1 } \rightarrow F _ { n }$ ; confidence 0.696

294. n067520468.png ; $\tilde { A }$ ; confidence 0.696

295. a13004011.png ; $( \varphi _ { 0 } \lambda \varphi _ { 1 } )$ ; confidence 0.696

296. i13001040.png ; $\operatorname { per } ( A ) \geq \operatorname { per } ( B ) \operatorname { per } ( D ) \geq \prod _ { i = 1 } ^ { n } a _ { i i }.$ ; confidence 0.696

297. f1302805.png ; $A \mathbf{x} \leq \mathbf{b} + \varepsilon$ ; confidence 0.696

298. a130050181.png ; $\zeta _ { A } ( z ) = \sum _ { n = 1 } ^ { \infty } a ( n ) n ^ { - z },$ ; confidence 0.696

299. s12020081.png ; $\left\{ S ^ { \lambda } : \lambda \text { a partition of } n \right\}$ ; confidence 0.696

300. w13011030.png ; $f ( T ^ { n } x )$ ; confidence 0.696

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/46. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/46&oldid=46491