Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/44

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 14:10, 10 May 2020 by Rui Martins (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

List

1. v13011059.png ; $2 l$ ; confidence 0.747

2. c02157056.png ; $P _ { \alpha }$ ; confidence 0.747

3. b12032018.png ; $\| y \| = \| v \|$ ; confidence 0.747

4. g13006022.png ; $G _ { r_ i } ( A )$ ; confidence 0.747

5. l13005038.png ; $N / 2$ ; confidence 0.747

6. e12014040.png ; $s = t,$ ; confidence 0.747

7. d1300301.png ; $\psi \in L ^ { 2 } ( \mathbf{R} )$ ; confidence 0.747

8. t130140147.png ; $0 \rightarrow P _ { 1 } \rightarrow P _ { 0 } \rightarrow X \rightarrow 0$ ; confidence 0.747

9. a12005092.png ; $B ( . )$ ; confidence 0.747

10. m13023050.png ; $v = v ^ { \prime } + \sum_j r_j v_j$ ; confidence 0.747

11. p13007063.png ; $L _ { E } ( z ) = \operatorname { sup } \{ v ( z ) : v \in \mathcal{L} , v \leq 0 \text { on } E \}.$ ; confidence 0.747

12. w12010038.png ; $D T_j^i =$ ; confidence 0.747

13. l12006064.png ; $\operatorname { Im } h ^ { I I } ( z )$ ; confidence 0.747

14. b13020066.png ; $\mathfrak { g } ( A )$ ; confidence 0.746

15. t12005041.png ; $\overline { \Sigma } \square ^ { i } ( f ) = \bigcup _ { h \geq i } \Sigma ^ { i } ( f ).$ ; confidence 0.746

16. o13005093.png ; $x \in \mathfrak{H}$ ; confidence 0.746

17. t13013056.png ; $\operatorname{Hom}_\Lambda ( T , . )$ ; confidence 0.746

18. m13008019.png ; $\sigma \in ( 1 / 2 ) \mathbf{Z}$ ; confidence 0.746

19. c02639034.png ; $\gamma_2$ ; confidence 0.746

20. b12049042.png ; $B \in \mathcal{A}$ ; confidence 0.746

21. n13006020.png ; $\varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H ^ { 1 } ( \Omega )$ ; confidence 0.746

22. b120040103.png ; $\| x ^ { \prime } \| _ { X ^ { \prime } } = \operatorname { sup } \{ \int _ { \Omega } | x x ^ { \prime } | d \mu : \| x \| _ { X } \leq 1 \}.$ ; confidence 0.746

23. e12011011.png ; $\mu_0$ ; confidence 0.746

24. b130200198.png ; $\operatorname{mult}\alpha = \dim \mathfrak{g}^\alpha$ ; confidence 0.746

25. e03500073.png ; $W _ { \epsilon }$ ; confidence 0.746

26. a13026016.png ; $\zeta ( 5 )$ ; confidence 0.746

27. m130260143.png ; $X = M ( A ) \bigoplus _ { Q ( A ) } B =$ ; confidence 0.746

28. d13017019.png ; $\varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.746

29. c0209508.png ; $x = x_0$ ; confidence 0.746

30. t12019013.png ; $t ( k , r ) = \operatorname { lim } _ { n \rightarrow \infty } \frac { T ( n , k , r ) } { \left( \begin{array} { l } { n } \\ { r } \end{array} \right) }$ ; confidence 0.746

31. a130040202.png ; $\tilde { \Omega }F$ ; confidence 0.746

32. w12006029.png ; $f , g : \mathbf{R} ^ { n } \rightarrow M$ ; confidence 0.745

33. f12001017.png ; $G F = \operatorname {id}_X$ ; confidence 0.745

34. a12013027.png ; $\theta _ { n - 1} $ ; confidence 0.745

35. m062490152.png ; $F _ { \tau }$ ; confidence 0.745

36. x12001084.png ; $C ^ { t } [ G _ { \text { inn } } ]$ ; confidence 0.745

37. a130240480.png ; $1 , \ldots , n _ { 1 }$ ; confidence 0.745

38. l057000178.png ; $\beta \in B$ ; confidence 0.745

39. c13004016.png ; $ \operatorname {Cl} _ { 2 } ( z ) : = - \int _ { 0 } ^ { z } \operatorname { log } \left| 2 \operatorname { sin } \left( \frac { 1 } { 2 } t \right) \right| d t =$ ; confidence 0.745

40. h13007023.png ; $\mathbf{f} \in R ( t ) ^ { l }$ ; confidence 0.745

41. s12015086.png ; $H _ { \mathbf{R} }$ ; confidence 0.745

42. d1200606.png ; $u [ 1 ] = u + 2 \sigma _ { x }.$ ; confidence 0.745

43. t130050123.png ; $\sigma _ { T } ( A , \mathcal{X} / \mathcal{Y} )$ ; confidence 0.745

44. c120210129.png ; $\Delta _ { n } ( \theta )$ ; confidence 0.745

45. a120070117.png ; $A ( t ) u = L ( . , t , D _ { x } ) u\text { for } u \in D ( A ( t ) ).$ ; confidence 0.745

46. r08232010.png ; $u ( x ) = - \int _ { K } E _ { n } ( | x - y | ) d \mu ( y ) + h ( x ),$ ; confidence 0.745

47. a13027010.png ; $P _ { n } : Y \rightarrow X_n$ ; confidence 0.745

48. q12003051.png ; $\operatorname { Fun } _ { q } ( G / H )$ ; confidence 0.745

49. s13058013.png ; $\xi _ { r } ^ { 0 }$ ; confidence 0.745

50. s120170100.png ; $s = ( m - 1 , m - 2 , \dots , 1,0 )$ ; confidence 0.745

51. m12003048.png ; $b \uparrow \infty$ ; confidence 0.745

52. h12004022.png ; $V _ { \xi } \subset_{*} V _ { \eta }$ ; confidence 0.745

53. w120110112.png ; $( a \circ \chi ) ^ { w } = M ^ { * } a ^ { w } M.$ ; confidence 0.745

54. y12001019.png ; $B = \tau _ { V , V } R$ ; confidence 0.744

55. c12016022.png ; $( A + \Delta A ) \hat{x} = b$ ; confidence 0.744

56. a130040525.png ; $\operatorname{FFi} _ { \mathcal{D} } \mathbf{A}$ ; confidence 0.744

57. s12035033.png ; $\hat { \theta } _ { N }$ ; confidence 0.744

58. i13009010.png ; $\operatorname{Gal}( K / k ) \cong \mathbf{Z} _ { p }$ ; confidence 0.744

59. f04185024.png ; $\square ^ { 1 } S _ { 2 }$ ; confidence 0.744

60. d130080148.png ; $P = 0$ ; confidence 0.744

61. e12011047.png ; $\nabla \times \mathbf{E} = \mathbf{O} , \nabla .\mathbf{D} = q _ { f };$ ; confidence 0.744

62. s12025019.png ; $P _ { n } ( x ) = U _ { n } ( x )$ ; confidence 0.744

63. b01501037.png ; $B O _ { n } = \operatorname { lim } _ { r \rightarrow \infty } \operatorname { inf } \operatorname { Gras } _ { n } ( \mathbf{R} ^ { r + n } )$ ; confidence 0.744

64. w1300906.png ; $\tilde{h}$ ; confidence 0.744

65. s12023083.png ; $A \geq 0$ ; confidence 0.744

66. n13002019.png ; $A _ { \varepsilon } = \{ x : \{ x \} \times Y \subset O _ { \varepsilon } \}$ ; confidence 0.744

67. f12010014.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } c ( n ) e ^ { 2 \pi i n z }.$ ; confidence 0.744

68. z130100103.png ; $\downarrow \forall x \exists y \forall w ( w \in y \leftrightarrow \exists v ( v \in x \bigwedge \varphi ) ).$ ; confidence 0.744

69. k12008027.png ; $\{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.743

70. f13016035.png ; $\mu _ { R } ( M ) \leq \operatorname { max } \{ \mu ( M , P ) : P \in \operatorname { Spec } ( R ) \} + \operatorname { Kdim } ( R ).$ ; confidence 0.743

71. p12017075.png ; $\delta _ { A , B } ( X ) \in \mathcal{C} _ { 2 }$ ; confidence 0.743

72. f13024010.png ; $K ( L ( a , b ) c , d ) + K ( c , L ( a , b ) d ) + K ( a , K ( c , d ) b ) = 0,$ ; confidence 0.743

73. s12028039.png ; $[ g _ { i } ] : Y \rightarrow P _ { i }$ ; confidence 0.743

74. i13001055.png ; $\lambda _ { s } > \operatorname { max } \{ \lambda _ { s +1 } ,1 \}$ ; confidence 0.743

75. q12003041.png ; $1 \in A$ ; confidence 0.743

76. m12011082.png ; $\Phi ( M ) \in \operatorname{Wh} ( \pi _ { 1 } ( M ) )$ ; confidence 0.743

77. l13010051.png ; $\operatorname{WF} ( B f ) = \operatorname{WF} ( f )$ ; confidence 0.743

78. b1202109.png ; $\Delta \subset \mathfrak { h } ^ { * }$ ; confidence 0.743

79. z12001026.png ; $e _ { i } ^ { p } = 0$ ; confidence 0.743

80. l120170261.png ; $\{ e _ { 2 } ^ { j } \}$ ; confidence 0.743

81. b12010019.png ; $\nu \geq 2$ ; confidence 0.743

82. c02028061.png ; $d s$ ; confidence 0.743

83. b120270106.png ; $= \frac { \mathsf{E} \int _ { 0 } ^ { T _ { 1 } } h ( Z ( u ) ) d u } { \mathsf{E} ( T _ { 1 } ) }.$ ; confidence 0.743

84. a13032046.png ; $ \mathsf{E} ( Y ) = 0$ ; confidence 0.743

85. a12026087.png ; $i \gg 1$ ; confidence 0.743

86. s1305409.png ; $x _ { i j } ( a )$ ; confidence 0.743

87. c13025063.png ; $R _ { j } = \{ k : I _ { k } ( T _ { j } - ) = 1 \}$ ; confidence 0.742

88. b0158205.png ; $L > 0$ ; confidence 0.742

89. a01152021.png ; $\operatorname{GL} ( n )$ ; confidence 0.742

90. i13005085.png ; $R _ { - } ( x ) : = - \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( - k ) \frac { a ( - k ) } { a ( k ) } e ^ { - i k x } d k$ ; confidence 0.742

91. j13004053.png ; $M \leq \operatorname { cr } ( D _ { L } ) - s ( D _ { L } ) + 1$ ; confidence 0.742

92. l12007054.png ; $\lambda / r$ ; confidence 0.742

93. l13006064.png ; $a _ { i - 1 } = \lfloor \frac { m _ { i - 1 } } { m _ { i } } \rfloor ,$ ; confidence 0.742

94. a130040795.png ; $ \mathsf{K} _ { 0 }$ ; confidence 0.742

95. b13027064.png ; $\rightarrow \operatorname{Hom}_{\mathbf{Z}} ( K _ { 1 } ( A ) , \mathbf{Z} ) \rightarrow 0.$ ; confidence 0.742

96. w12020020.png ; $x _ { n } \neq b$ ; confidence 0.742

97. t1200109.png ; $I$ ; confidence 0.742

98. m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742

99. b12052086.png ; $\prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.742

100. f130100138.png ; $\delta _ { x }$ ; confidence 0.742

101. d13003016.png ; $\lambda \approx 0.2$ ; confidence 0.742

102. t12006066.png ; $N \leq Z$ ; confidence 0.742

103. p07298017.png ; $t _ { 0 } \in \Gamma$ ; confidence 0.742

104. e12015067.png ; $\frac { d ^ { 2 x ^ { i } } } { d t ^ { 2 } } + \gamma ^ { i_{ j k} } ( x ) \frac { d x ^ { j } } { d t } \frac { d x ^ { k } } { d t } = \lambda _ { ( i ) } \frac { d x ^ { i } } { d t },$ ; confidence 0.742

105. d12018085.png ; $( \mathbf{R} _ { d } , + )$ ; confidence 0.742

106. w130080147.png ; $\mathcal{A} \sim ( A , \overline { A } )$ ; confidence 0.742

107. t13004031.png ; $\tau T _ { n } ^ { * } ( x )$ ; confidence 0.742

108. b11009041.png ; $G_n$ ; confidence 0.742

109. f12011041.png ; $\Delta ^ { \circ } = \{ x : \langle x , \eta \rangle \geq 0 \text { for all } \eta \in \Delta \}$ ; confidence 0.741

110. b13007057.png ; $\tau : a \mapsto a , b \mapsto b ^ { - 1 },$ ; confidence 0.741

111. t120200199.png ; $\geq | z _ { h_2 } + 1 | \geq \ldots \geq | z _ { n } |.$ ; confidence 0.741

112. o13008027.png ; $\{ l _ { 1 } , l _ { 2 } \}$ ; confidence 0.741

113. d1202607.png ; $\mathsf{E} \xi _ { k } ^ { 2 } = \sigma ^ { 2 } > 0$ ; confidence 0.741

114. w11006030.png ; $\langle \dot { y } , f \rangle$ ; confidence 0.741

115. t13021034.png ; $L _ { m , n } a _ { n } = f _ { m }$ ; confidence 0.741

116. f0384702.png ; $0 \leq t \leq T$ ; confidence 0.741

117. b1202404.png ; $f _ { \pm }$ ; confidence 0.741

118. w12005054.png ; $f _ { A } ( x + h ) = f ( x ) + \sum _ { | \alpha | \geq 1 } \frac { 1 } { \alpha ! } \frac { \partial ^ { | \alpha | } f } { \partial x ^ { \alpha } } | _ { x } h ^ { \alpha },$ ; confidence 0.741

119. a13018066.png ; $L _ { w }$ ; confidence 0.741

120. a1103205.png ; $y ^ { \prime } = f ( t , y ) , y ( t _ { 0 } ) = y _ { 0 } , t \in [ t _ { 0 } , t _ { e } ],$ ; confidence 0.741

121. d12029090.png ; $y _ { n } = f ( q _ { m } )$ ; confidence 0.741

122. m12012042.png ; $C = \mathbf{Z} ( R ) = \mathbf{C} _ { Q } ( R )$ ; confidence 0.741

123. d13018028.png ; $f J ^ { \circ_E}$ ; confidence 0.741

124. n067520373.png ; $\Lambda \equiv ( \lambda _ { 1 } , \dots , \lambda _ { n } ) \neq 0$ ; confidence 0.741

125. w13008042.png ; $d \Omega _ { n } \sim d ( \lambda ^ { n } ) + \ldots$ ; confidence 0.740

126. h13002027.png ; $w ( t ) = 2 t 1 r 213$ ; confidence 0.740

127. c02327015.png ; $q \in \overline { A \cup p }$ ; confidence 0.740

128. m130140147.png ; $d \zeta / \zeta = d \zeta _ { 2 } / \zeta _ { 2 } \wedge \ldots \wedge d \zeta _ { n } / \zeta _ { n }$ ; confidence 0.740

129. f12019034.png ; $x \in G \backslash N$ ; confidence 0.740

130. b13012010.png ; $\{ a _ { n } ^ { * } \}$ ; confidence 0.740

131. q07658079.png ; $\kappa_i$ ; confidence 0.740

132. l12006091.png ; $( \phi , e ^ { - i H t } \phi )$ ; confidence 0.740

133. a010210108.png ; $m_j$ ; confidence 0.740

134. e12026012.png ; $L _ { \mu } ( \theta ) = \int _ { E } \operatorname { exp } \langle \theta , x \rangle \mu ( d x )$ ; confidence 0.740

135. f13012026.png ; $h ( G ) \leq \text{l} ( A )$ ; confidence 0.740

136. a130240444.png ; $\mathbf{Y}$ ; confidence 0.740

137. b0159402.png ; $\rho ( x )$ ; confidence 0.740

138. a01093015.png ; $\geq 1$ ; confidence 0.740

139. b12049044.png ; $A _ { j } \cap B = \emptyset$ ; confidence 0.740

140. e12012029.png ; $L ( \theta | Y _ { \text{obs} } )$ ; confidence 0.740

141. x12002051.png ; $R \# U ( L )$ ; confidence 0.740

142. n067520420.png ; $a ( Y )$ ; confidence 0.740

143. l12013071.png ; $\mathcal{U} _ { p }$ ; confidence 0.740

144. k1200202.png ; $\operatorname{SU} ( n )$ ; confidence 0.740

145. i13006071.png ; $\| \mathcal{S} \| : = \int _ { 0 } ^ { \infty } ( 1 + x ) | F ^ { \prime } ( x ) | d x$ ; confidence 0.740

146. b12005056.png ; $z \in E ^ { * * }$ ; confidence 0.739

147. c13011014.png ; $\partial f ( x ) : = \{ \zeta : f ^ { \circ } ( x ; v ) \geq \langle \zeta , v \rangle , \forall v \in X \},$ ; confidence 0.739

148. m130140157.png ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } z_j \frac { \partial f ( z ) } { \partial z _ { j } }.$ ; confidence 0.739

149. i130090133.png ; $\lambda _ { p } ( K / k ) > 0$ ; confidence 0.739

150. m12012037.png ; $Q _ { \text{l} } ( R ) = R$ ; confidence 0.739

151. d120230123.png ; $R = I$ ; confidence 0.739

152. j12001021.png ; $F = X + F _ { ( 2 ) } + \ldots + F _ { ( d ) }$ ; confidence 0.739

153. b13012027.png ; $\int _ { \mathbf{R} } d \mu ( t ) = 1$ ; confidence 0.739

154. r13008056.png ; $f ^ { \prime } ( z _ { 0 } , z _ { 0 } ) = 1$ ; confidence 0.739

155. f1200101.png ; $\operatorname{Sh}$ ; confidence 0.739

156. k1300203.png ; $\{ ( x _ { i } , y _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.739

157. g12001013.png ; $\int _ { - \infty } ^ { \infty } ( G _ { b } ^ { \alpha } f ) ( \omega ) d b = \hat { f } ( \omega ),$ ; confidence 0.739

158. c1300901.png ; $T _ { n } ( x ) = \operatorname { cos } ( n \operatorname { cos } ^ { - 1 } x )$ ; confidence 0.739

159. i13005063.png ; $q \in L _ { 1 , 1} $ ; confidence 0.739

160. e13004058.png ; $P _ { \pm }$ ; confidence 0.739

161. n12011029.png ; $\xi _ { i }(.)$ ; confidence 0.739

162. d13006049.png ; $X _ { j _ { 1 } } , \dots , X _ { j _ { k } }$ ; confidence 0.738

163. e12010031.png ; $\mathbf{J}$ ; confidence 0.738

164. m0644206.png ; $\operatorname{SL} _ { 2 } ( \mathbf{Z} )$ ; confidence 0.738

165. i050650195.png ; $( 0 , q )$ ; confidence 0.738

166. a12008050.png ; $u _ { 1 } \in V$ ; confidence 0.738

167. s13053061.png ; $\operatorname{St} _ { q }$ ; confidence 0.738

168. v12002048.png ; $\overline { H } \square _ { c } ^ { * }$ ; confidence 0.738

169. i13003067.png ; $( P _ { b } )$ ; confidence 0.738

170. a130240485.png ; $\mathbf{B}$ ; confidence 0.738

171. a110420169.png ; $K$ ; confidence 0.738

172. a130240219.png ; $\Gamma$ ; confidence 0.738

173. m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738

174. r130080119.png ; $| u ( y ) | = \left| \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { 1 / 2 } v _ { j } \varphi _ { j } ( x ) \right| < c \Lambda \| v \| _ { 0 } = c \Lambda \| u \| _ { + },$ ; confidence 0.738

175. d12012048.png ; $d \alpha = d \alpha'$ ; confidence 0.738

176. t130050103.png ; $\sigma _ { \text{r} }$ ; confidence 0.738

177. f12024055.png ; $( - \infty , - g ( t ) ]$ ; confidence 0.738

178. t12015058.png ; $\mathcal{A} ^ { \prime \prime }$ ; confidence 0.738

179. g12005052.png ; $\frac { \partial A } { \partial \tau } = A + ( 1 + i a ) \frac { \partial ^ { 2 } A } { \partial \xi ^ { 2 } } - ( 1 + i b ) A | A | ^ { 2 },$ ; confidence 0.737

180. t13021036.png ; $f _ { m } = ( f , \phi _ { m } )$ ; confidence 0.737

181. l12005017.png ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Re } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau,$ ; confidence 0.737

182. a12008057.png ; $v \in H ^ { 1 } ( \Omega )$ ; confidence 0.737

183. b13004059.png ; $\{ U _ { n } , V _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.737

184. d120020180.png ; $\tilde{x} ^ { ( k ) }$ ; confidence 0.737

185. c12030062.png ; $\mathcal{B} _ { i } \rightarrow \mathcal{B} _ { i +1} $ ; confidence 0.737

186. b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737

187. a11042091.png ; $x \in G$ ; confidence 0.737

188. i05023059.png ; $1 \leq m \leq n$ ; confidence 0.737

189. s130510124.png ; $c : V ^ { f } \rightarrow J$ ; confidence 0.737

190. i050730104.png ; $G _ { g }$ ; confidence 0.737

191. b13023018.png ; $T _ { \overline{m} }$ ; confidence 0.737

192. b12021092.png ; $W ^ { ( i ) }$ ; confidence 0.737

193. q12001047.png ; $f \in \mathcal{D}$ ; confidence 0.737

194. f12002046.png ; $A ( ( X ) ) = \{ \sum _ { n \geq n _ { 0 } } ^ { \infty } a _ { n } X ^ { n } : n _ { 0 } \in \mathbf{Z} , a _ { n } \in A \}$ ; confidence 0.737

195. a130050179.png ; $G_q$ ; confidence 0.737

196. c12008014.png ; $A _ { 2 } \in C ^ { m \times ( n - m ) }$ ; confidence 0.737

197. w120030122.png ; $n K + m ^ { - 1 } B _ { X^{**} } $ ; confidence 0.737

198. g1300305.png ; $\nu ^ { \Lambda } / \mathcal{I}$ ; confidence 0.737

199. i12008068.png ; $S _ { N + 1 } = S _ { 1 }$ ; confidence 0.736

200. c02380029.png ; $\Sigma ^ { * }$ ; confidence 0.736

201. b12024022.png ; $f = f_+ . \delta . f_-$ ; confidence 0.736

202. k13005015.png ; $n = \pi \sigma ^ { 2 } N c.$ ; confidence 0.736

203. d12028023.png ; $A ( D ) ^ { * } \simeq A _ { 0 } ( \overline { \mathbf{C} } \backslash D ),$ ; confidence 0.736

204. b12046046.png ; $V _ { H }e$ ; confidence 0.736

205. f04049017.png ; $\nu _ { 1 } / 2$ ; confidence 0.736

206. i13005044.png ; $\dot { a } ( i k _ { j } ) \neq 0$ ; confidence 0.736

207. a01255047.png ; $a ( f )$ ; confidence 0.736

208. p1201505.png ; $X$ ; confidence 0.736

209. b12052080.png ; $F ( x _ { n } )$ ; confidence 0.736

210. d11008062.png ; $( K ^ { H _ { i } } , v ^ { H _ { i } } )$ ; confidence 0.736

211. r13007051.png ; $| u ( y ) | \leq c ( y ) \| u \|_+$ ; confidence 0.736

212. s13049050.png ; $| N _ { k } | = | N _ { r \langle P \rangle -k } |$ ; confidence 0.736

213. p12015059.png ; $b$ ; confidence 0.736

214. t09408035.png ; $\pi _ { n } ( A , A \bigcap B , * ) \rightarrow \pi _ { n } ( X , B , * )$ ; confidence 0.736

215. g12005030.png ; $k_c$ ; confidence 0.736

216. z13007037.png ; $( b )$ ; confidence 0.736

217. f13019015.png ; $a _ { k } = \frac { 1 } { 2 N c _ { k } } \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) e ^ { - i k x _ { j } },$ ; confidence 0.736

218. d12016060.png ; $\| f \| \neq \operatorname { dist } ( f , C ( S ) \otimes \pi _ { k } ( T ) + \pi_{\text{l}}( S ) \otimes C ( T ) )$ ; confidence 0.736

219. n067520295.png ; $\mathcal{H} _ { \alpha }$ ; confidence 0.736

220. d130060127.png ; $R \subseteq X$ ; confidence 0.736

221. v13011038.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l }.$ ; confidence 0.735

222. f120110158.png ; $\mathbf{R} ^ { n } - i \Delta \cap \{ | \eta | \geq \varepsilon \}$ ; confidence 0.735

223. c12029011.png ; $( g , m ) \rightarrow \square ^ { g } m$ ; confidence 0.735

224. b13006040.png ; $| \mu - \lambda | \leq \| V \| . \| V ^ { - 1 } \| . \| E \|,$ ; confidence 0.735

225. b1102208.png ; $H _ { \text{B} } ( X )$ ; confidence 0.735

226. f130290160.png ; $( X , L ) \in | \mathbf{SET} \times \mathbf{C}|$ ; confidence 0.735

227. s12024043.png ; $\mathbf{z} ^ { n } = \{ z _ { i } ^ { n } \}$ ; confidence 0.735

228. w120090389.png ; $\nabla ( \lambda ) = \hat{M} _ { K }$ ; confidence 0.735

229. s12002011.png ; $\alpha = ( \alpha _ { 1 } , \dots , \alpha _ { D } ) ^ { T }$ ; confidence 0.735

230. l12012020.png ; $\hat { \mathbf{Q} } _ { p }$ ; confidence 0.735

231. p12015032.png ; $\alpha$ ; confidence 0.735

232. f120080151.png ; $L _ { p } ( G ) \otimes \widehat{} L _ { q } ( G )$ ; confidence 0.735

233. a130310106.png ; $\operatorname{AvDTime}( T )$ ; confidence 0.735

234. c02068037.png ; $h_i$ ; confidence 0.735

235. p130100175.png ; $f _ { j } ^ { * } d \theta / 2 \pi \rightarrow \mu _ { z }$ ; confidence 0.735

236. b13001017.png ; $G ( \mathbf{Q} )$ ; confidence 0.735

237. n12010033.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq \nu \| y - z \| ^ { 2 } , y , z \in \mathbf{C} ^ { n }.$ ; confidence 0.735

238. d12016074.png ; $L _ { 1 } ( S \times T )$ ; confidence 0.735

239. g13004013.png ; $\mathcal{H} ^ { m } ( E \bigcap f ( \mathbf{R} ^ { m } ) ) = 0.$ ; confidence 0.735

240. d0306905.png ; $\overline{\phi}$ ; confidence 0.735

241. j120020184.png ; $U _ { t } ^ { 1 } U _ { t } ^ { 2 } - \int _ { 0 } ^ { t } \nabla u _ { 1 } ( B _ { s } ) . \nabla u _ { 2 } ( B _ { s } ) d s$ ; confidence 0.735

242. b13029072.png ; $H _ { \mathfrak{m} } ^ { i } ( M ) = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { Ext } _ { A } ^ { i } ( A / \mathfrak { m } ^ { n } , M ) \quad ( i \in \mathbf{Z} )$ ; confidence 0.734

243. a13031096.png ; $\mathcal{DEXP}$ ; confidence 0.734

244. w12009093.png ; $Y _ { \lambda }$ ; confidence 0.734

245. a13032043.png ; $\mathsf{P} _ { \theta } ( S _ { N } = K ) = ( 1 - r ^ { J } ) ( 1 - r ^ { K + J } ) ^ { - 1 }$ ; confidence 0.734

246. f04049021.png ; $\mathsf{P} \{ F _ { \nu _ { 1 } , \nu _ { 2 } } < x \} = B _ { \nu _ { 1 } / 2 , \nu _ { 2 } / 2} \left( \frac { ( \nu _ { 1 } / \nu _ { 2 } ) x } { 1 + ( \nu _ { 1 } / \nu _ { 2 } ) x } \right).$ ; confidence 0.734

247. s12023037.png ; $X X ^ { \prime }$ ; confidence 0.734

248. m12025047.png ; $L C ^ { n - 1 }$ ; confidence 0.734

249. b12043064.png ; $\varepsilon x = 0 , S x = - x,$ ; confidence 0.734

250. t12001040.png ; $a = 1,2,3$ ; confidence 0.734

251. l12017039.png ; $\langle a , b | b a ^ { 2 } b ^ { - 1 } = a ^ { 3 } , a b ^ { 2 } a ^ { - 1 } = b ^ { 3 } \rangle$ ; confidence 0.734

252. p1201306.png ; $a _ { n } \neq 0$ ; confidence 0.734

253. b13007012.png ; $n | = 1$ ; confidence 0.734

254. a120160145.png ; $Q_{it}$ ; confidence 0.734

255. c120010106.png ; $E \subset \mathbf{P} ^ { n }$ ; confidence 0.734

256. d13013029.png ; $A ^ { + } = A ^ { - } + \nabla \chi$ ; confidence 0.734

257. v09690053.png ; $H = \sum^\oplus H_i$ ; confidence 0.733

258. g12004032.png ; $( \partial _ { t } - \sum _ { j = 1 } ^ { n } \partial _ { x _ { j } } ^ { 2 } ) u = 0$ ; confidence 0.733

259. s1300708.png ; $\phi ( \phi ( s , u ) , v ) = \phi ( s , u ^ { * } v ),$ ; confidence 0.733

260. p12015047.png ; $\left\{ \begin{array} { l } { \Delta u + \alpha u = 0 \quad \text { in } \Omega, } \\ { \frac { \partial u } { \partial n } = 0 \text { and } u = 1 \quad \text { on } \partial \Omega. } \end{array} \right.$ ; confidence 0.733

261. a12002010.png ; $S ^ { 1 }$ ; confidence 0.733

262. a130050192.png ; $\mathcal{A} ( p )$ ; confidence 0.733

263. r08232041.png ; $J ( \rho )$ ; confidence 0.733

264. e12014053.png ; $s \left( \begin{array} { l } { v } \\ { t } \end{array} \right)$ ; confidence 0.733

265. d1300607.png ; $\operatorname { Bel } ( \Xi ) = 1$ ; confidence 0.733

266. f12011035.png ; $e ^ { - i x s }$ ; confidence 0.733

267. w12020019.png ; $x _ { 1 } \neq a$ ; confidence 0.733

268. k12012066.png ; $F _ { \text{a.c.} }$ ; confidence 0.733

269. a13014010.png ; $x , y \in X$ ; confidence 0.733

270. a130240498.png ; $\mathbf{X} _ { 3 } = ( 1 , - 1 )$ ; confidence 0.733

271. d130080144.png ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) )$ ; confidence 0.733

272. t130130108.png ; $P _ { \Lambda }$ ; confidence 0.733

273. t13015010.png ; $T _ { f } h : = P ( f h )$ ; confidence 0.733

274. k12010043.png ; $D _ { P }$ ; confidence 0.733

275. a13007051.png ; $\omega ( a ) + \omega ( b ) < k$ ; confidence 0.733

276. a13030085.png ; $C ( \Omega )$ ; confidence 0.733

277. a1302509.png ; $x , y , z , u , v \in V$ ; confidence 0.733

278. w130080190.png ; $\Theta = ( u , \delta v ) - ( 1 / \kappa ) \sum H _ { a } \delta t _ { a }$ ; confidence 0.733

279. e03500083.png ; $L _ { 2 } ( [ a , b ] )$ ; confidence 0.733

280. b130290172.png ; $H _ { \mathfrak{m} } ^ { i } ( A )$ ; confidence 0.733

281. a130040639.png ; $\operatorname{mng}_{\mathcal{S}_{P} ,} \mathfrak { M }$ ; confidence 0.733

282. t1300403.png ; $\mathbf{D} y ( x ) : = y ^ { \prime } ( x ) + y ( x ) = 0,0 \leq x \leq 1,$ ; confidence 0.733

283. s12026019.png ; $f = ( f ^ { ( n ) } ) _ { n \in \mathbf{N} _ { 0 } }$ ; confidence 0.733

284. c13025045.png ; $] t , t + h ]$ ; confidence 0.733

285. a1101508.png ; $\psi ( . )$ ; confidence 0.732

286. c1301309.png ; $A = \frac { \partial Q } { \partial K } . \frac { 1 } { \alpha } . k ^ { 1 - \alpha },$ ; confidence 0.732

287. w12006023.png ; $\mathcal{M} f$ ; confidence 0.732

288. m12015021.png ; $\mathsf{P} ( X \in A ) = \int _ { A } f _ { X } ( X ) d X$ ; confidence 0.732

289. s13050017.png ; $\mathcal{F} _ { l } \neq \emptyset$ ; confidence 0.732

290. s12034027.png ; $\operatorname{SH} ^ { * } ( M , \omega ) \bigotimes \operatorname{SH} ^ { * } ( M , \omega ) \rightarrow \operatorname{SH} ^ { * } ( M , \omega ).$ ; confidence 0.732

291. b1204209.png ; $\Psi _ { V , W } : V \bigotimes W \rightarrow W \bigotimes V$ ; confidence 0.732

292. t12013041.png ; $W _ { n } = \operatorname { span } _ { \text{C} } \left\{ \frac { \partial ^ { k } \Psi _ { 1 , n } ( x , z ) } { \partial x _ { 1 } } : k = 0,1 , \ldots \right\},$ ; confidence 0.732

293. n066630131.png ; $u | _ { \partial \Omega } \in H _ { 2 } ^ { 1 / 2 } ( \partial \Omega )$ ; confidence 0.732

294. o13006015.png ; $\sigma _ { 1 } \Phi A _ { 2 } ^ { * } - \sigma _ { 2 } \Phi A _ { 1 } ^ { * } = \gamma \Phi ,$ ; confidence 0.732

295. f12021081.png ; $m _ { j } = \sum \{ n _ { i } : 1 \leq i < j \ \text{ and } \ \lambda _ { i } - \lambda _ { j } \in \mathbf{N} \}.$ ; confidence 0.732

296. h13007031.png ; $\Delta : = \left( \begin{array} { c c c } { a _ { 11 } } & { \dots } & { a _ { 1 r } } \\ { \vdots } & { \square } & { \vdots } \\ { a _ { r 1 } } & { \dots } & { a _ { m } } \end{array} \right).$ ; confidence 0.732

297. m12011045.png ; $p * : \pi _ { 1 } ( M ) \rightarrow \pi _ { 1 } ( S ^ { 1 } ) = \mathbf{Z}$ ; confidence 0.732

298. v13007050.png ; $d \phi / d S$ ; confidence 0.732

299. c0221004.png ; $p ( x ) = \frac { 1 } { 2 ^ { n / 2 } \Gamma ( n / 2 ) } e ^ { - x / 2 } x ^ { n / 2 - 1 },$ ; confidence 0.732

300. f13007024.png ; $\mathbf{Z} ^ { 3 }$ ; confidence 0.732

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/44. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/44&oldid=45823