Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/33

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 13:20, 10 May 2020 by Rui Martins (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

List

1. r13008044.png ; $D _ { z _ { 0 } , r } : = \{ z : | z - z _ { 0 } | \leq r \} \in D$ ; confidence 0.905

2. s13045075.png ; $f _ { S } = 1 - \frac { 3 \sum _ { i = 1 } ^ { n } | R _ { i } - S _ { i } | } { n ^ { 2 } - 1 }.$ ; confidence 0.905

3. n12010038.png ; $\nu = \xi / h$ ; confidence 0.905

4. m1202406.png ; $( \psi [ 1 ] \varphi ) _ { x } = - \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ { x },$ ; confidence 0.905

5. d11022011.png ; $[ a , c ]$ ; confidence 0.905

6. p13007021.png ; $\operatorname { limsup } _ { j \rightarrow \infty } \frac { 1 } { j } \operatorname { log } | f _ { j } |,$ ; confidence 0.905

7. t13015069.png ; $\mathcal{T} ( S )$ ; confidence 0.905

8. e120230158.png ; $L \Delta$ ; confidence 0.905

9. w12018058.png ; $A _ { \epsilon }$ ; confidence 0.905

10. v13005088.png ; $Y ( \omega , x ) = \sum _ { n \in \mathbf{Z} } L ( n ) x ^ { - n - 2 }$ ; confidence 0.905

11. c12027010.png ; $\gamma ( s )$ ; confidence 0.905

12. a13006043.png ; $G _ { q } ^ { \# } ( n ) = q ^ { n }$ ; confidence 0.905

13. o12005067.png ; $\int _ { 0 } ^ { \infty } \psi ( f ^ { * } ( s ) / w ( s ) ) w ( s ) d s < \infty,$ ; confidence 0.905

14. a01150016.png ; $e$ ; confidence 0.905

15. a120050134.png ; $( N \times N )$ ; confidence 0.905

16. r13008020.png ; $c ( y ) = \| K ( . , y ) \|$ ; confidence 0.905

17. a130240177.png ; $\alpha_i$ ; confidence 0.905

18. s1304502.png ; $\{ ( x _ { i } , y _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.905

19. d032600107.png ; $C _ { 1 } > 0$ ; confidence 0.905

20. j12001034.png ; $\mathbf{C} [ F ]$ ; confidence 0.905

21. y1200108.png ; $\tau _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.905

22. a13031028.png ; $\hat { \mu } ( X _ { i } ) = \sum _ { X _ { j } \leq X _ { i } } \mu ( X _ { j } )$ ; confidence 0.905

23. k055840376.png ; $[ f , g ] = \int _ { a } ^ { b } f \bar{g} r d x$ ; confidence 0.905

24. j12002027.png ; $\varphi _ { 1 }$ ; confidence 0.905

25. c022780539.png ; $\operatorname{mod} p$ ; confidence 0.905

26. e1201104.png ; $\nabla \times \mathbf{E} + \frac { 1 } { c } \frac { \partial \mathbf{B} } { \partial t } = 0;$ ; confidence 0.905

27. w1201008.png ; $\square ^ { \prime } \Gamma _ { j k } ^ { i } ( x )$ ; confidence 0.905

28. r13007030.png ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty , | \varphi _ { j } ( x ) | < c , \forall j , x.$ ; confidence 0.905

29. t13015075.png ; $S = \mathbf{T} ^ { 2 }$ ; confidence 0.905

30. f12023084.png ; $D \in \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.905

31. d13003030.png ; $\hat { f } \in L ^ { 1 } ( \mathbf{R} )$ ; confidence 0.905

32. b01566022.png ; $p \neq q$ ; confidence 0.905

33. o11001043.png ; $x , y , z \in G$ ; confidence 0.905

34. p13012013.png ; $L _ { 1 } \geq L _ { 2 }$ ; confidence 0.905

35. i12006044.png ; $\operatorname { PrSu } ( P )$ ; confidence 0.905

36. m1301401.png ; $S ( x , r )$ ; confidence 0.905

37. h04601027.png ; $M _ { 0 } \approx M _ { 1 }$ ; confidence 0.905

38. r130080108.png ; $A ^ { - 1 } K = I$ ; confidence 0.905

39. t12007024.png ; $z \mapsto z + k$ ; confidence 0.905

40. t120070117.png ; $= \frac { 1 } { 2 } \left( \frac { \Theta _ { \Delta } ( q ) } { \eta ( q ) ^ { 24 } } + \frac { \eta ( q ) ^ { 24 } } { \eta ( q ^ { 2 } ) ^ { 24 } } \right) +$ ; confidence 0.904

41. a01361026.png ; $x \rightarrow - \infty$ ; confidence 0.904

42. a13031017.png ; $4.2$ ; confidence 0.904

43. d12011024.png ; $\| 0 \| = 0,$ ; confidence 0.904

44. i130090118.png ; $R = \mathbf{Z} _ { p } [ [ \Gamma ] ]$ ; confidence 0.904

45. a01329090.png ; $\Pi _ { 2 }$ ; confidence 0.904

46. l057000115.png ; $F \mathbf{c} _ { k }$ ; confidence 0.904

47. m12012096.png ; $Q _ { r } ( R )$ ; confidence 0.904

48. w13014026.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n } { 2 } r ( n x ) = \delta ( x ).$ ; confidence 0.904

49. v13005065.png ; $= x _ { 2 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 0 } } { x _ { 2 } } \right) Y ( Y ( u , x _ { 0 } ) v , x _ { 2 } ),$ ; confidence 0.904

50. s13051012.png ; $g ( F ( u ) ) = \{ g ( v ) : v \in F ( u ) \}$ ; confidence 0.904

51. f1200504.png ; $\mathbf{F}$ ; confidence 0.904

52. c13026036.png ; $\langle [ A ] , \phi \rangle$ ; confidence 0.904

53. f040280104.png ; $K ( G )$ ; confidence 0.904

54. p12017097.png ; $\mathcal{B}$ ; confidence 0.904

55. a130050267.png ; $C > 0$ ; confidence 0.904

56. c1100101.png ; $A _ { 0 }$ ; confidence 0.904

57. z13003028.png ; $\theta _ { 3 }$ ; confidence 0.904

58. w12017016.png ; $\omega _ { 0 } ( G ) = 1$ ; confidence 0.904

59. k05584094.png ; $[ x , x ] > 0$ ; confidence 0.904

60. e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 },$ ; confidence 0.904

61. d12003023.png ; $b \mathcal{A} _ { p }$ ; confidence 0.904

62. w12001067.png ; $W _ { 1 + \infty}$ ; confidence 0.904

63. a130040789.png ; $g \circ h = g ^ { \prime } \circ h$ ; confidence 0.904

64. k055840335.png ; $L ( \lambda ) = \lambda ^ { n } I + \lambda ^ { n - 1 } B _ { n - 1 } + \ldots + \lambda B _ { 1 } + B _ { 0 }$ ; confidence 0.904

65. g120040129.png ; $P ( x , D ) = \sum _ { j = 1 } ^ { n } X _ { j } ^ { 2 }$ ; confidence 0.904

66. e12023038.png ; $M = [ a , b ]$ ; confidence 0.904

67. a130240335.png ; $\mathbf{F} = \mathbf{EX}_4$ ; confidence 0.904

68. c13015052.png ; $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ ; confidence 0.904

69. e12002034.png ; $\operatorname{cocat}( X )$ ; confidence 0.904

70. t120200110.png ; $c _ { m , n } = \sqrt { n } ( n / ( 4 e ( m + n ) ) ) ^ { n }$ ; confidence 0.903

71. i1200802.png ; $S _ { i } = \pm 1$ ; confidence 0.903

72. c130070216.png ; $\mathfrak { D } ( P , x ) T = M ( T ) ^ { \epsilon }$ ; confidence 0.903

73. e12024093.png ; $2 r > 2$ ; confidence 0.903

74. m13014017.png ; $j _ { n } ( \zeta ) = \Gamma \left( \frac { n } { 2 } \right) \left( \frac { 2 } { \zeta } \right) ^ { ( n - 2 ) / 2 } J _ { ( n - 2 ) / 2 } ( \zeta ),$ ; confidence 0.903

75. a120160117.png ; $x _ { i j^{\prime} }$ ; confidence 0.903

76. w12020018.png ; $\nu = n$ ; confidence 0.903

77. h13009044.png ; $t , g _ { i } , t ^ { - 1 }$ ; confidence 0.903

78. s120340108.png ; $w : \mathbf{R} \times S ^ { 1 } \rightarrow M$ ; confidence 0.903

79. i130060100.png ; $\varphi_{+} ( k ) = S ( - k ) \varphi _ { - } ( k ),$ ; confidence 0.903

80. t12013081.png ; $\langle p , y \rangle = 0$ ; confidence 0.903

81. d12028058.png ; $\Phi ^ { m } \in C ^ { 2 } ( \overline { D } _ { m } )$ ; confidence 0.903

82. b12042065.png ; $\operatorname{coev}_V : \underline { 1 } \rightarrow V \otimes V ^ { * }$ ; confidence 0.903

83. v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903

84. b110220233.png ; $H _ { \mathcal{H} }$ ; confidence 0.903

85. b12040063.png ; $G / B$ ; confidence 0.903

86. e12002090.png ; $\sum Y$ ; confidence 0.903

87. o13001066.png ; $i _ { 1 } : H ^ { 1 } ( D ^ { \prime R} ) \rightarrow L ^ { 2 } ( D _ { R } ^ { \prime } )$ ; confidence 0.903

88. a01162012.png ; $L _ { p }$ ; confidence 0.903

89. n06663038.png ; $M _ { i } > 0$ ; confidence 0.903

90. i130090188.png ; $L _ { p } ( 1 - s , \chi ) = G _ { \chi } ( u ^ { s } - 1 ) / ( u ^ { s } - 1 )$ ; confidence 0.903

91. w12003085.png ; $X ^ { \perp }$ ; confidence 0.903

92. m06377018.png ; $[ a _ { i } ^ { - } , a _ { i } ^ { + } ]$ ; confidence 0.903

93. r13013023.png ; $X = M \oplus L$ ; confidence 0.903

94. t120200187.png ; $z \in \{ | z | \geq \rho \} \cup \{ | \operatorname { arc } z | < \kappa \}$ ; confidence 0.903

95. b12015014.png ; $\{ 0,1 \} ^ { n }$ ; confidence 0.903

96. c12004066.png ; $| \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.903

97. a130240223.png ; $\zeta _ { i } = \mathsf{E} ( z _ { i } )$ ; confidence 0.903

98. a01417037.png ; $M / \Gamma$ ; confidence 0.903

99. a12008038.png ; $A = S ^ { \prime \prime } ( 0 )$ ; confidence 0.903

100. l120170129.png ; $L ^ { 2 } = \operatorname {pt}$ ; confidence 0.902

101. l11002065.png ; $x = x ^ { + } x ^ { - } , \quad x ^ { + } \bigwedge ( x ^ { - } ) ^ { - 1 } = e,$ ; confidence 0.902

102. s120320108.png ; $\operatorname { lim } ( V _ { \overline{1} } ) \neq 0$ ; confidence 0.902

103. b13023061.png ; $H _ { n } = \operatorname { rist } _ { G } ( n )$ ; confidence 0.902

104. g12004072.png ; $p _ { \alpha } \in G ^ { s } ( \Omega )$ ; confidence 0.902

105. b1104302.png ; $\mathbf{R} _ { + }$ ; confidence 0.902

106. i12006031.png ; $\operatorname { Idim } ( P ) \leq \operatorname { dim } ( Q )$ ; confidence 0.902

107. b12031090.png ; $\{ \phi _ { k } \}$ ; confidence 0.902

108. h04601098.png ; $M _ { 0 } = M _ { 0 } ^ { \prime }$ ; confidence 0.902

109. s130530106.png ; $| W |$ ; confidence 0.902

110. z1300208.png ; $Z = \{ x \in \mathbf{R} : f ( x ) = 0 \}$ ; confidence 0.902

111. s12026031.png ; $D _ { t } ^ { * } : ( L ^ { 2 } ) \rightarrow \Gamma ^ { - }$ ; confidence 0.902

112. a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902

113. i13004011.png ; $x \neq 0 ( \operatorname { mod } 2 \pi )$ ; confidence 0.902

114. n12011076.png ; $\left[ \underline { f } \square _ { \alpha } ( x ) , \overline { f } _ { \alpha } ( x ) \right]$ ; confidence 0.902

115. b1302201.png ; $P _ { K }$ ; confidence 0.902

116. j120020173.png ; $U _ { \tau } ^ { * } = \operatorname { sup } _ { 0 \leq t < \tau} | U _ { t } |$ ; confidence 0.902

117. z13011047.png ; $10 / 11$ ; confidence 0.902

118. b12042022.png ; $\otimes$ ; confidence 0.902

119. c130160190.png ; $\Sigma ^ { 1 _ { 1 }}$ ; confidence 0.902

120. l05700095.png ; $\mathbf{false} \equiv \lambda x y . y$ ; confidence 0.902

121. m1301408.png ; $\int _ { S ( x , r ) } f ( y ) d \sigma _ { r } ( y ) = f ( x ) , x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + },$ ; confidence 0.902

122. t120070102.png ; $v _{- 1}1 = v$ ; confidence 0.902

123. w12012049.png ; $g = \psi h$ ; confidence 0.902

124. d120230104.png ; $F R - R A ^ { * }$ ; confidence 0.902

125. d03372067.png ; $a > 1$ ; confidence 0.902

126. b13004030.png ; $\emptyset \neq E \subset X$ ; confidence 0.902

127. b11066014.png ; $\| f \| _ { * } = \operatorname { sup } _ { Q } \frac { 1 } { | Q | } \int _ { Q } | f ( t ) - f _ { Q } | d t < \infty,$ ; confidence 0.901

128. a01021056.png ; $n = 1$ ; confidence 0.901

129. g13003021.png ; $\mathcal{V} ^ { \Lambda }$ ; confidence 0.901

130. k1200404.png ; $\Lambda _ { D } ( a , x )$ ; confidence 0.901

131. m064510131.png ; $A _ { g }$ ; confidence 0.901

132. f13029015.png ; $T _ { m } ( a , b ) = ( a + b - 1 ) \vee 0$ ; confidence 0.901

133. t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times \mathbf{Z} _ { 2 },$ ; confidence 0.901

134. e120120103.png ; $f ( \phi | \theta ^ { ( t ) } )$ ; confidence 0.901

135. t13014031.png ; $\beta : i \rightarrow j$ ; confidence 0.901

136. k12005026.png ; $\mu ^ { * } ( K _ { X } + B ) = K _ { Y } + \sum _ { j = 1 } ^ { t } b _ { j } \mu _ { * } ^ { - 1 } B _ { j } + \sum _ { k = 1 } ^ { s } d _ { k } D _ { k }$ ; confidence 0.901

137. c12021091.png ; $\mathcal{L} ( T _ { n } | P _ { n } ) \Rightarrow N ( 0 , \Gamma )$ ; confidence 0.901

138. i13003098.png ; $k _ { t } ( x , x )$ ; confidence 0.901

139. b13022026.png ; $\| u \| _ { p , T } = ( \int _ { T } | u ( x ) | ^ { p } d x ) ^ { 1 / p }$ ; confidence 0.901

140. w1200705.png ; $\{ f , g \} = \sum \left( \frac { \partial f } { \partial p _ { j } } \frac { \partial g } { \partial q _ { j } } - \frac { \partial f } { \partial q _ { j } } \frac { \partial g } { \partial p _ { j } } \right).$ ; confidence 0.901

141. f1301309.png ; $S \neq 0$ ; confidence 0.901

142. a13004037.png ; $\varphi \in T$ ; confidence 0.901

143. i12008081.png ; $\mathcal{P} = \left( \begin{array} { c c } { \lambda _ { + } } & { 0 } \\ { 0 } & { \lambda _ { - } } \end{array} \right) , \quad \mathcal{P} ^ { N } = \left( \begin{array} { c c } { \lambda _ { + } ^ { N } } & { 0 } \\ { 0 } & { \lambda ^ { N } } \end{array} \right),$ ; confidence 0.901

144. k12005066.png ; $f \circ g ( \mathbf{P} ^ { 1 } )$ ; confidence 0.901

145. e12006069.png ; $\nabla _ { \Gamma } s : T M \rightarrow V Y$ ; confidence 0.901

146. l06003069.png ; $P \tilde { U }$ ; confidence 0.901

147. f12011011.png ; $| \operatorname { Im } z | < \delta$ ; confidence 0.901

148. w13009097.png ; $L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.901

149. w12018057.png ; $G ( A ) = \cap _ { \epsilon > 0} H ( A _ { \epsilon } )$ ; confidence 0.901

150. o130010112.png ; $\alpha ^ { \prime } , \alpha \in S ^ { 2 } , k _ { 0 } > 0$ ; confidence 0.901

151. b13019044.png ; $S ( f ; M _ { 1 } , M _ { 2 } )$ ; confidence 0.901

152. w13017065.png ; $\operatorname { det } k ( z ) \neq 0$ ; confidence 0.901

153. b13004068.png ; $( U _ { 1 } \supset V _ { 1 } \supset \ldots \supset U _ { n } )$ ; confidence 0.900

154. a12024011.png ; $\sum _ { x \in C } v _ { x } ( f ) = 0$ ; confidence 0.900

155. s13044024.png ; $X \subset S ^ { N }$ ; confidence 0.900

156. a130180112.png ; $c _ { i } ^ { U }$ ; confidence 0.900

157. s12032012.png ; $p ( x . y ) = p ( x ) + p ( y )$ ; confidence 0.900

158. w13006035.png ; $\{ ( \tau _ { j } , \text{l} _ { j } ) \}$ ; confidence 0.900

159. e12002061.png ; $\pi _ { n } ( X , Y ) = [ \Sigma ^ { n } X , Y ] \cong [ X , \Omega ^ { n } Y ],$ ; confidence 0.900

160. e12001094.png ; $G : \mathfrak { A } \rightarrow \mathfrak { X }$ ; confidence 0.900

161. w12017061.png ; $l + n > 2$ ; confidence 0.900

162. a130040132.png ; $\text{IPC}$ ; confidence 0.900

163. a130040581.png ; $\text{S} 5 ^ { \text{W} }$ ; confidence 0.900

164. e120190158.png ; $h _ { 1 } \cup h _ { 2 }$ ; confidence 0.900

165. t093150537.png ; $\{ \emptyset \}$ ; confidence 0.900

166. g13001086.png ; $\gamma , \delta \in F ^ { * }$ ; confidence 0.900

167. e12006018.png ; $T p ( A _ { y } ) = A$ ; confidence 0.900

168. w1201805.png ; $t \wedge s = \operatorname { min } ( t , s )$ ; confidence 0.900

169. b13020094.png ; $\operatorname{ dim} \mathfrak { g } ^ { \alpha } < \infty$ ; confidence 0.900

170. k12005015.png ; $0 \leq b _ { j } \leq 1$ ; confidence 0.900

171. a12002023.png ; $t \in \mathbf{I}$ ; confidence 0.900

172. b1102206.png ; $K _ { i } ( X )$ ; confidence 0.900

173. a01080024.png ; $\tilde { \nabla }$ ; confidence 0.900

174. b12002053.png ; $Q _ { n } ( t ) = Q ( t ) + \frac { t - F _ { n } ( Q ( t ) ) } { f ( Q ( t ) ) } +$ ; confidence 0.900

175. w12008018.png ; $( f \times g ) ( q , p ) : = W ^ { - 1 } ( W ( f ) .W ( g ) ).$ ; confidence 0.900

176. t1301401.png ; $Q = ( Q _ { 0 } , Q _ { 1 } )$ ; confidence 0.900

177. g130040184.png ; $\delta \nu ( X ) = \int \langle X ( x ) , V \rangle d \nu ( x , V ).$ ; confidence 0.900

178. b13026066.png ; $\operatorname { deg } _ { B } [ f , \Omega , C _ { i } ]$ ; confidence 0.900

179. b1101108.png ; $L _ { p } ( 0,1 )$ ; confidence 0.899

180. q076820144.png ; $P _ { j } ( x )$ ; confidence 0.899

181. c12021067.png ; $\{ \mathcal{L} _ { m } \}$ ; confidence 0.899

182. f12021039.png ; $\lambda _ { i } - \lambda _ { j }$ ; confidence 0.899

183. k055840151.png ; $[ x , x ] \geq 0$ ; confidence 0.899

184. b11002026.png ; $u _ { f } \in U$ ; confidence 0.899

185. c13007058.png ; $D _ { t _ { 0 } }$ ; confidence 0.899

186. c02534010.png ; $|$ ; confidence 0.899

187. g13003020.png ; $w \in \mathcal{E} ^ { \prime } ( \Omega )$ ; confidence 0.899

188. d12012014.png ; $d _ { 0 } : O G \rightarrow O G ^ { \prime } , \quad d _ { A } : A G \rightarrow A G ^ { \prime }$ ; confidence 0.899

189. d12028010.png ; $\{ f_{m} \}$ ; confidence 0.899

190. a130240496.png ; $s = 2$ ; confidence 0.899

191. l1300407.png ; $[ x y z ] = - [ y x z ],$ ; confidence 0.899

192. a12027086.png ; $W ( \overline { \rho } ) = \overline { W ( \rho ) }$ ; confidence 0.899

193. e12015053.png ; $\mathcal{R} _ { j k } ^ { i }$ ; confidence 0.899

194. j13007069.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z ) = \angle F ^ { \prime } ( \omega ) = \omega \overline { \eta } d ( \omega )$ ; confidence 0.899

195. e12002076.png ; $g \circ \alpha = \beta \circ f$ ; confidence 0.899

196. w12007015.png ; $\mathbf{q}_j$ ; confidence 0.899

197. a01020027.png ; $\mathfrak{D}$ ; confidence 0.899

198. s13064019.png ; $\frac { 1 } { n } \sum _ { k = 1 } ^ { n } f ( \lambda _ { k } ^ { ( n ) } ) = \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } f ( a ( e ^ { i \theta } ) ) d \theta + o ( 1 ),$ ; confidence 0.899

199. b12004045.png ; $| f|$ ; confidence 0.899

200. f13010027.png ; $A _ { p } ( G )$ ; confidence 0.899

201. y12002023.png ; $\nabla _ { A } * F _ { A } = 0,$ ; confidence 0.899

202. i12002010.png ; $\times \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) S _ { \mu , i \tau } ( x ) \left| \Gamma \left( \frac { 1 - \mu + i \tau } { 2 } \right) \right| ^ { 2 } g ( \tau ) d \tau.$ ; confidence 0.899

203. f120110193.png ; $\left\{ z = x + i y : x _ { 1 } > \frac { | x ^ { \prime } | + 1 } { \varepsilon } , | y | < \varepsilon \right\},$ ; confidence 0.899

204. a13031074.png ; $\text{time}_\mathcal{A}( X )$ ; confidence 0.899

205. d12019026.png ; $\lambda ( L ) = \operatorname { sup } \{ E ( f ) : f \in L , \| f \| _ { L _ { 2 } ( \Omega ) } = 1 \}$ ; confidence 0.899

206. c0275606.png ; $k = \mathbf{Q}$ ; confidence 0.899

207. m06222044.png ; $h < n$ ; confidence 0.899

208. m12009065.png ; $\overline { P ( - \xi ) }$ ; confidence 0.899

209. p13013071.png ; $T _ { \lambda } ^ { + }$ ; confidence 0.898

210. h120120128.png ; $\hat { \tau } : C \rightarrow Y$ ; confidence 0.898

211. c13014018.png ; $B = ( b _ { i , j} )$ ; confidence 0.898

212. h120120114.png ; $T ( . )$ ; confidence 0.898

213. f1302907.png ; $\top \otimes \top = \top $ ; confidence 0.898

214. k055840379.png ; $L _ { 2 } = L _ { 2 } [ 0 , \infty )$ ; confidence 0.898

215. a12004016.png ; $x _ { 0 } \in \overline { D ( A ) }$ ; confidence 0.898

216. q12007038.png ; $g ^ { n } = 1 , E ^ { n } = F ^ { n } = 0,$ ; confidence 0.898

217. i13001037.png ; $A = \left( \begin{array} { c c } { B } & { C } \\ { C ^ { * } } & { D } \end{array} \right)$ ; confidence 0.898

218. i130090224.png ; $Y = \operatorname { Gal } ( M ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \otimes \mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.898

219. c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898

220. w12014036.png ; $S \boxplus T$ ; confidence 0.898

221. h120120122.png ; $\overline { B } ( A )$ ; confidence 0.898

222. t12014090.png ; $\phi / | \phi |$ ; confidence 0.898

223. n067520401.png ; $z _ { 1 } = \ldots = z _ { k } = 0$ ; confidence 0.898

224. a13032027.png ; $H _ { 1 } : \theta = q = 1 - p$ ; confidence 0.898

225. t09356048.png ; $\lambda_ f ( x )$ ; confidence 0.898

226. s120340114.png ; $\operatorname { grad } S _ { H }$ ; confidence 0.898

227. k055840332.png ; $K ( s , t ) = \overline { K ( t , s ) }$ ; confidence 0.898

228. w120110193.png ; $G _ { X } \leq G _ { X } ^ { g };$ ; confidence 0.898

229. i12010025.png ; $d s _ { M } ^ { 2 } = d t ^ { 2 } + f ( t ) d s _ { N } ^ { 2 },$ ; confidence 0.898

230. i13006079.png ; $\mathcal{S} \Rightarrow \rho \Rightarrow q$ ; confidence 0.898

231. a11002046.png ; $\operatorname {GF} ( q )$ ; confidence 0.897

232. f12015057.png ; $r ^ { \prime } ( A ) = \operatorname { lim } _ { n \rightarrow \infty } \beta ( A ^ { n } ).$ ; confidence 0.897

233. f1202302.png ; $\Omega ^ { k } ( M ; T M ) = \Gamma ( \wedge ^ { k } T ^ { * } M \otimes T M )$ ; confidence 0.897

234. l06003068.png ; $P \tilde{T}$ ; I'm not sure.

235. d0300603.png ; $C ^ { 2 } ( - \infty , + \infty )$ ; confidence 0.897

236. l13004010.png ; $x , y , z , u , v , w \in U$ ; confidence 0.897

237. a130040240.png ; $\Gamma \cup \{ \varphi \} \subseteq \text{Fm}$ ; confidence 0.897

238. b01735084.png ; $L u = f$ ; confidence 0.897

239. p07486026.png ; $0 \leq s \leq l$ ; confidence 0.897

240. c12021098.png ; $k \times k$ ; confidence 0.897

241. b110100205.png ; $\alpha > 0$ ; confidence 0.897

242. b1302305.png ; $H _ { n } \cong L _ { n } \times \ldots \times L _ { n }$ ; confidence 0.897

243. c120300103.png ; $u ( t ) = e ^ { i h t }$ ; confidence 0.897

244. k05584096.png ; $[ x , x ] = 0$ ; confidence 0.897

245. l12006047.png ; $( \phi , e ^ { - i H t } \phi ) = \frac { 1 } { 2 \pi i } \int _ { C } e ^ { - i z t } ( \phi , G ( z ) \phi ) d z,$ ; confidence 0.897

246. j13004033.png ; $9_{42}$ ; confidence 0.897

247. a13029056.png ; $\phi = id$ ; confidence 0.897

248. b12009041.png ; $( 1 + a ^ { 2 } ) \frac { d \tau } { d \xi } =$ ; confidence 0.897

249. k0550803.png ; $\sum _ { k = 1 } ^ { n } | d z _ { k } | ^ { 2 }$ ; confidence 0.897

250. h12001046.png ; $\beta ^ { n } \neq 0$ ; confidence 0.897

251. f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897

252. o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi ,$ ; confidence 0.897

253. l110040108.png ; $G \in \mathcal{R}$ ; confidence 0.897

254. b01615048.png ; $\gamma _ { k }$ ; confidence 0.897

255. e1201105.png ; $\nabla . \mathbf{D} = q_ f;$ ; confidence 0.897

256. i130090203.png ; $L _ { p } ( s , \chi ) = G _ { \chi } ^ { * } ( u ^ { s } - 1 ) / ( u ^ { s } - u )$ ; confidence 0.897

257. s13053036.png ; $\chi ( x )$ ; confidence 0.897

258. s1306609.png ; $Q _ { n } ( z , \tau ) = \phi _ { n } ( z ) + \tau \phi _ { n } ^ { * } ( z )$ ; confidence 0.897

259. e12007087.png ; $H ^ { 1 } = H ^ { 1 } ( \Gamma , k , \mathbf{v} ; P ( k ) )$ ; confidence 0.897

260. b12034059.png ; $f = \sum f _ { n } \varphi _ { n }$ ; confidence 0.897

261. h1200505.png ; $C _ { N }$ ; confidence 0.897

262. j120020133.png ; $f \in H _ { 0 } ^ { 1 }$ ; confidence 0.897

263. a13012061.png ; $A G ( 2 , q )$ ; confidence 0.896

264. l1200508.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } \operatorname { Im } K _ { 1 / 2 + i \tau} ( x ) f ( x ) d x,$ ; confidence 0.896

265. b01734028.png ; $\partial S$ ; confidence 0.896

266. q12001059.png ; $t \mapsto \sqrt { - 1 }t$ ; confidence 0.896

267. a11002010.png ; $g \neq 1$ ; confidence 0.896

268. f13024034.png ; $L ( \varepsilon ) = \operatorname { Inn } \operatorname { Der } T ( \varepsilon ) \oplus T ( \varepsilon )$ ; confidence 0.896

269. o1200203.png ; $\square _ { 2 } F _ { 1 } ( a , b ; c ; z )$ ; confidence 0.896

270. c120010150.png ; $s ( \zeta ) \in E ^ { * }$ ; confidence 0.896

271. b110220140.png ; $s = m$ ; confidence 0.896

272. w13017027.png ; $z _ { t } ^ { ( i ) }$ ; confidence 0.896

273. s130510138.png ; $k \in \mathbf{Z} ^ { 0 }$ ; confidence 0.896

274. d12023014.png ; $c _ { i } = c _ { - i } ^ { * }$ ; confidence 0.896

275. a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896

276. b015350285.png ; $k \in \mathbf{Z}$ ; confidence 0.896

277. s12024017.png ; $p _ { i } : X \rightarrow X_i$ ; confidence 0.896

278. o13006087.png ; $A _ { k } ^ { ( 2 ) } = U A _ { k } ^ { ( 1 ) } U ^ { - 1 } ( k = 1,2 ),$ ; confidence 0.896

279. t13013030.png ; $\mathcal{F} = \{ C : \operatorname { Hom } _ { \Lambda } ( \mathcal{T} , C ) = 0 \}$ ; confidence 0.896

280. d13006080.png ; $m ^ { \uparrow X } ( A ) = m ( B )$ ; confidence 0.896

281. k05558033.png ; $K ( G , 1 )$ ; confidence 0.896

282. t13011018.png ; $\mathcal{T} ( T _ { A } ) = \{ M _ { A } : \operatorname { Ext } _ { A } ^ { 1 } ( T , M ) = 0 \}$ ; confidence 0.896

283. w130080224.png ; $N _ { f } < 2 N _ { c }$ ; confidence 0.896

284. g12004010.png ; $\alpha \in \mathbf{Z} _ { + } ^ { n } , | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }.$ ; confidence 0.896

285. g13006046.png ; $| x _ { j } | \leq | x _ { i }|$ ; confidence 0.896

286. h13006045.png ; $( D \alpha D ) ( D \beta D ) = D \alpha D \beta D = D \alpha ( \bigcup _ { \beta ^ { \prime } } D \beta ^ { \prime } ) =$ ; confidence 0.896

287. s13014032.png ; $x ^ { T } = x _ { 1 } ^ { \gamma _ { 1 } } x _ { 2 } ^ { \gamma _ { 2 } } \dots$ ; confidence 0.896

288. e120240108.png ; $Y ( N )$ ; confidence 0.896

289. b1200805.png ; $\epsilon ( p , m )$ ; confidence 0.896

290. e120120105.png ; $\theta ^ { ( t ) }$ ; confidence 0.896

291. b12016024.png ; $x _ { 3 }$ ; confidence 0.895

292. c12030026.png ; $( \mathcal{H} ^ { \otimes r } , \mathcal{H} ^ { \otimes r + k } )$ ; confidence 0.895

293. z13011013.png ; $29,899$ ; confidence 0.895

294. m13025060.png ; $\int \rho _ { \varepsilon } ( x ) d x = 1$ ; confidence 0.895

295. d12028084.png ; $F ( f ) = F _ { \phi } ( f ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \int _ { \partial D _ { \epsilon } } f ( z ) \overline { \phi ( z ) } d \sigma,$ ; confidence 0.895

296. a130240363.png ; $\text{SS} _ { \mathcal{H} }$ ; confidence 0.895

297. z13008030.png ; $n = k + l$ ; confidence 0.895

298. p12017092.png ; $( a + i b ) x = x ( c + i d ) \Leftrightarrow ( a - i b ) x = x ( c - i d ),$ ; confidence 0.895

299. d11008012.png ; $e = e ( w | v ) = ( w L : v K )$ ; confidence 0.895

300. a130180179.png ; $V \subseteq \square ^ { \alpha } U$ ; confidence 0.895

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/33. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/33&oldid=45821