Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/30

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. g04383054.png ; $ \operatorname {WF} ( f )$ ; confidence 0.933

2. u1300209.png ; $\| f \| _ { 2 } = 1$ ; confidence 0.933

3. v13005090.png ; $L ( 0 ) v = n v$ ; confidence 0.933

4. e12012035.png ; $g _ { j } > 0$ ; confidence 0.933

5. m13009018.png ; $\int _ { \mathbf{R} ^ { 3 } } | \psi ( t , \mathbf{x} ) | ^ { 2 } d \mathbf{x}$ ; confidence 0.933

6. a130060129.png ; $q_0$ ; confidence 0.933

7. k1201002.png ; $ \mathbf{R} ^ { 3 } = \mathbf{C} _ { z } \times \mathbf{R} _ { t }$ ; confidence 0.933

8. d12016021.png ; $\| f _ { n } \| \downarrow \text { dist } ( f , C ( S ) + C ( T ) )$ ; confidence 0.932

9. c120080110.png ; $\Delta ( z _ { l } , z _ { 2 } ) = \operatorname { det } [ E z _ { 1 } z _ { 2 } - A _ { 1 } z _ { 1 } - A _ { 2 } z _ { 2 } - A _ { 0 } ] =$ ; confidence 0.932

10. b130010102.png ; $Z \mapsto ( A Z + B ) ( C Z + D ) ^ { - 1 }$ ; confidence 0.932

11. a13008011.png ; $U \leq f ( X ) / h ( X )$ ; confidence 0.932

12. p13007081.png ; $= \operatorname { sup } \left\{ \int _ { K } M ( u ) d V : u \in \operatorname { PSH } ( \Omega ) , 0 < u < 1 \right\}.$ ; confidence 0.932

13. b1302205.png ; $P _ { k - 1 } \subset P _ { K } \subset P _ { k }$ ; confidence 0.932

14. m1301104.png ; $f = f ( \mathbf{x} ^ { 0 } , t )$ ; confidence 0.932

15. b12016051.png ; $x _ { i } ^ { \prime } \neq 0$ ; confidence 0.932

16. k0557806.png ; $\frac { f ( x _ { 0 } + ) + f ( x _ { 0 } - ) } { 2 } =$ ; confidence 0.932

17. c13015056.png ; $\mathcal{G} ( \Omega ) = \mathcal{E} _ { M } ( \Omega ) / \mathcal{N} ( \Omega )$ ; confidence 0.932

18. t12001038.png ; $\eta ^ { a } ( Y ) = g ( \xi ^ { a } , Y )$ ; confidence 0.932

19. a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }.$ ; confidence 0.932

20. r13004063.png ; $u _ { 1 } = \left| \frac { \partial u } { \partial n } \right| = 0 \ \text{in the boundary of} \Omega$ ; confidence 0.932

21. r13013012.png ; $P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$ ; confidence 0.932

22. t12005046.png ; $d f _ { x } : \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { p }$ ; confidence 0.932

23. b01699069.png ; $B ^ { \prime }$ ; confidence 0.932

24. a1107803.png ; $d _ { A }$ ; confidence 0.932

25. s0911906.png ; $V _ { \overline{1} }$ ; confidence 0.932

26. a13027013.png ; $Q _ { n } y \rightarrow y$ ; confidence 0.932

27. h120020105.png ; $\int _ { D } | \psi ^ { ( n ) } ( \zeta ) | ^ { p } ( 1 - | \zeta | ) ^ { n p - 2 } d m _ { 2 } ( \zeta ) < \infty,$ ; confidence 0.932

28. d13017016.png ; $\lambda _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x },$ ; confidence 0.932

29. b12043016.png ; $( B , \Delta , \varepsilon , S )$ ; confidence 0.932

30. a13017022.png ; $\Pi \circ \mathcal{B}$ ; confidence 0.932

31. b130120106.png ; $f \notin \mathcal{A} ^ { * }$ ; confidence 0.932

32. f12023024.png ; $[ K _ { 1 } , K _ { 2 } ]$ ; confidence 0.932

33. b12040061.png ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.932

34. m12012074.png ; $0 \neq q \in Q$ ; confidence 0.932

35. b12022058.png ; $\forall u \in \mathcal{U} : M ( u , \xi ) \in D _ { \xi },$ ; confidence 0.932

36. v12002070.png ; $\nu = \operatorname { max } _ { 0 \leq k \leq N - 1 } ( d _ { k } + k ).$ ; confidence 0.932

37. m13011074.png ; $\mathbf{v} = \frac { \partial } { \partial t } ( \mathbf{x} ^ { 0 } + \mathbf{u} ) | _ { \mathbf{x} ^ { 0 } } = ( \frac { \partial \mathbf{u} } { \partial t } ) | _ { \mathbf{x} ^ { 0 } } = \frac { D u } { D t }.$ ; confidence 0.932

38. p07370068.png ; $k [ G ]$ ; confidence 0.931

39. b12031062.png ; $G _ { \delta } = ( 2 / \pi ) \operatorname { sup } _ { x > 0 } \int _ { 0 } ^ { 1 } ( 1 - t ^ { 2 } ) ^ { \delta } \operatorname { sin } x t d t / t$ ; confidence 0.931

40. f12019024.png ; $\{ s \in S : s ^ { - 1 } t s = t \}$ ; confidence 0.931

41. a120280114.png ; $\mathcal{I} \neq L ^ { 1 } ( G )$ ; confidence 0.931

42. d11008060.png ; $( L ^ { H _ { i } } , w ^ { H _ { i } } )$ ; confidence 0.931

43. o12006050.png ; $C _ { 0 } ^ { \infty }$ ; confidence 0.931

44. r13012020.png ; $x ^ { * } x \leq y y ^ { * } + z z ^ { * }$ ; confidence 0.931

45. d120230109.png ; $u _ { 0 } = 1 = v _ { 0 }$ ; confidence 0.931

46. a01138063.png ; $\sim$ ; confidence 0.931

47. b11107012.png ; $\rho ( t )$ ; confidence 0.931

48. b13003030.png ; $y \in V ^ { - \sigma }$ ; confidence 0.931

49. m12023069.png ; $\operatorname { lim } _ { t \downarrow 0 } u ( t , x ) = f ( x ) \quad \text { for all } x \in H,$ ; confidence 0.931

50. b13012080.png ; $\operatorname { lim } _ { \varepsilon \rightarrow 0 } \| f V _ { \varepsilon } \| _ { \mathcal{A} } * = 0.$ ; confidence 0.931

51. c12002045.png ; $( I ^ { \alpha } f ) ( x ) = c _ { \mu , \alpha } \int _ { 0 } ^ { \infty } ( f ^ { * } \mu _ { t } ) ( x ) t ^ { \alpha - 1 } d t,$ ; confidence 0.931

52. m13014084.png ; $\overline{\mathcal{D}}$ ; confidence 0.931

53. s1305907.png ; $\{ z ^ { j } \} _ { j = p } ^ { q }$ ; confidence 0.931

54. h13006039.png ; $u = D \alpha D$ ; confidence 0.931

55. h13002016.png ; $t \notin A$ ; confidence 0.931

56. b12040027.png ; $\varrho : H \rightarrow F$ ; confidence 0.931

57. n12011020.png ; $( d / d x ) g ( x )$ ; confidence 0.931

58. c02367023.png ; $S _ { i }$ ; confidence 0.931

59. b1301704.png ; $\operatorname {max}( S _ { T } - K , 0 )$ ; confidence 0.931

60. a120050129.png ; $\frac { \partial u } { \partial t } + \sum _ { j = 1 } ^ { m }a _ { j } ( t , u ) \frac { \partial u } { \partial x _ { j } } = f ( t , u ),$ ; confidence 0.931

61. d03024024.png ; $f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.931

62. b12031086.png ; $| f | \operatorname { log } ^ { + } | f |$ ; confidence 0.931

63. a12023060.png ; $| q | = q _1 + \ldots + q_n$ ; confidence 0.931

64. f04034086.png ; $\leq k$ ; confidence 0.931

65. n12011070.png ; $f ^ { * } ( . )$ ; confidence 0.931

66. d120280110.png ; $H ^ { n , n - 1 } = Z ^ { n , n - 1 } / B ^ { n , n - 1 },$ ; confidence 0.931

67. b12032016.png ; $x , y , u , v \in E$ ; confidence 0.931

68. v1200602.png ; $B _ { 2 n } = A _ { 2 n } - \sum _ { p - 1 | 2 n } \frac { 1 } { p },$ ; confidence 0.931

69. h13006010.png ; $q ( z ) = e ^ { 2 \pi i z }$ ; confidence 0.931

70. n12011058.png ; $\underline{x} ^ { * }$ ; confidence 0.931

71. w12003051.png ; $| f ( \gamma ) | \geq \varepsilon$ ; confidence 0.930

72. l12009073.png ; $A \times \mathbf{R}$ ; confidence 0.930

73. c1202001.png ; $( M ^ { 2 n - 1 } , \xi )$ ; confidence 0.930

74. c02211039.png ; $\tilde { \theta }_n$ ; confidence 0.930

75. d12003042.png ; $f \in b \Delta$ ; confidence 0.930

76. s12023020.png ; $\phi ( T T ^ { \prime } )$ ; confidence 0.930

77. b13019046.png ; $M = \sqrt { T }$ ; confidence 0.930

78. q12001068.png ; $\tau \in \operatorname { Aut } ( G )$ ; confidence 0.930

79. k055840156.png ; $[ T x , T y ] = [ x , y ]$ ; confidence 0.930

80. z13001030.png ; $x ( n ) ^ { * } y ( n ) = \sum _ { j = 0 } ^ { n } x ( n - j ) y ( j ) = \sum _ { j = 0 } ^ { n } x ( n ) y ( n - j )$ ; confidence 0.930

81. t12021030.png ; $t ( M _ { i } )$ ; confidence 0.930

82. s13038050.png ; $z = ( z _ { 1 } , z _ { 2 } ) \in G$ ; confidence 0.930

83. c12018063.png ; $E G - F ^ { 2 } < 0$ ; confidence 0.930

84. t120140138.png ; $T _ { \phi _ { \lambda } }$ ; confidence 0.930

85. s13034027.png ; $q ^ { - 1 } L _ { + } - q L _ { - } = z L _ { 0 }$ ; confidence 0.930

86. m11011038.png ; $\square _ { q } F _ { p - 1 }$ ; confidence 0.930

87. z13010033.png ; $\exists x \forall y ( \neg y \in x ).$ ; confidence 0.930

88. d12016014.png ; $( M _ { t } f ) ( s ) = \frac { 1 } { 2 } \operatorname { sup } _ { t } f ( s , t ) + \frac { 1 } { 2 } \operatorname { inf } _ { t } f ( s , t )$ ; confidence 0.930

89. i13007019.png ; $S ^ { 2 } \times S ^ { 2 } \times \mathbf{R} _ { + }$ ; confidence 0.930

90. d0302503.png ; $y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0,$ ; confidence 0.930

91. b130200160.png ; $r ( \lambda ) = \lambda - \lambda ( h _ { i } ) \alpha _ { i }$ ; confidence 0.930

92. b12051013.png ; $f ( x _ { + } ) < f ( x _ { c } )$ ; confidence 0.930

93. v13011027.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \sum _ { m = - \infty } ^ { \infty } \operatorname { log } ( z - ( z _ { 0 } - m l ) ),$ ; confidence 0.930

94. w12006066.png ; $T _ { B } \circ T _ { A }$ ; confidence 0.930

95. a1201601.png ; $u _ { i } ( t )$ ; confidence 0.930

96. k13001027.png ; $\mathbf{Z} [ A ^ { \pm 1 } , a , b , c ]$ ; confidence 0.930

97. m0649709.png ; $m _ { \lambda }$ ; confidence 0.930

98. d12002017.png ; $u _ { 1 } \geq 0$ ; confidence 0.930

99. v13007034.png ; $Z \rightarrow w$ ; confidence 0.930

100. k055840350.png ; $Z ^ { 2 } + B _ { 1 } Z + B _ { 0 } = 0$ ; confidence 0.930

101. w13013019.png ; $\tilde { W } = W - 2 \pi \chi ( \Sigma )$ ; confidence 0.930

102. b13027031.png ; $\mathcal{Q} ( H )$ ; confidence 0.930

103. p12017093.png ; $( a x - x c ) + i ( b x - x d ) = 0$ ; confidence 0.930

104. f13021057.png ; $B ( G ) = \{ u \in \mathbf{C} ^ { G } : u v \in A ( G ) \text { for every } \ v \in A ( G ) \}.$ ; confidence 0.930

105. q13004041.png ; $\varphi \circ w$ ; confidence 0.929

106. w13013046.png ; $S ^ { 3 } \subset \mathbf{R} ^ { 4 }$ ; confidence 0.929

107. b110220123.png ; $E \otimes \mathbf{C}$ ; confidence 0.929

108. e12007057.png ; $F \in \{ \Gamma , - k , \mathbf{v} \}$ ; confidence 0.929

109. m1200106.png ; $x , y \in D ( T )$ ; confidence 0.929

110. c120210132.png ; $\mathcal{L} [ \sqrt { n } ( T _ { n } - \theta _ { n } ) | P _ { n , \theta _ { n } } ] \Rightarrow \mathcal{L} ( \theta )$ ; confidence 0.929

111. b13002026.png ; $A _ { \text{sa} }$ ; confidence 0.929

112. g13006019.png ; $\lambda \in G _ { i } ( A )$ ; confidence 0.929

113. w12017073.png ; $\iota \omega ( G ) = G$ ; confidence 0.929

114. e120240122.png ; $\overline { f } = f \otimes \overline { \mathbf{Q} }$ ; confidence 0.929

115. m12003070.png ; $\overset{\rightharpoonup} { \theta }$ ; confidence 0.929

116. b1302101.png ; $( N , B )$ ; confidence 0.929

117. l06003058.png ; $\sigma = k ^ { 2 } ( \pi - A - B - C );$ ; confidence 0.929

118. m13025039.png ; $7$ ; confidence 0.929 ; As Rui pointed out to me, this is a strange symbol

119. f13010038.png ; $A _ { 2 } ( G ) \subset A _ { p } ( G )$ ; confidence 0.929

120. i1200607.png ; $x <_P y$ ; confidence 0.929

121. f12009061.png ; $\mathcal{O} _ { \{ 0 \} } ^ { \prime } = \mathcal{B} _ { \{ 0 \} }$ ; confidence 0.929

122. c02327018.png ; $( \overline { A } = A )$ ; confidence 0.929

123. r13010018.png ; $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ ; confidence 0.929

124. m12015029.png ; $\mathsf{P} ( ( X , Y ) \in A ) = \int \int _ { A } f _ { X , Y } d X d Y$ ; confidence 0.929

125. s130510144.png ; $L _ { 1 } , L _ { 2 } \subset \mathbf{Z} ^ { 0 }$ ; confidence 0.929

126. a13004012.png ; $n = 2$ ; confidence 0.929

127. o12005020.png ; $\| f \| = \operatorname { inf } \{ \epsilon > 0 : I ( f / \epsilon ) \leq 1 \}$ ; confidence 0.929

128. l120100105.png ; $e < 0$ ; confidence 0.929

129. a1202208.png ; $\| x \| \leq 1$ ; confidence 0.929

130. a13008058.png ; $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$ ; confidence 0.929

131. w12019047.png ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929

132. f12011058.png ; $\Delta _ { k }$ ; confidence 0.929

133. h046010139.png ; $P = S ^ { 1 }$ ; confidence 0.929

134. w12008055.png ; $d \mu _ { X } ( u )$ ; confidence 0.929

135. s13051054.png ; $\mathcal{N} = \cup _ { n \in \mathcal{O} } N _ { n }$ ; confidence 0.929

136. b12052043.png ; $b _ { n + 1 } = \frac { f ( x _ { n + 1} ) - f ( x _ { n } ) } { x _ { n + 1} - x _ { n } }.$ ; confidence 0.929

137. r12002019.png ; $F _ { 1 } ( q , \dot { q } ) = C _ { 1 } ( q , \dot { q } ) \dot { q } + g _ { 1 } ( q ) + f _ { 1 } ( \dot { q } ),$ ; confidence 0.929

138. o130010151.png ; $\chi ( x ) : = \chi _ { D } ( x )$ ; confidence 0.929

139. b13016044.png ; $f | _ { K } \in A | _ { K } : = \{ f | _ { K } : f \in A \}$ ; confidence 0.929

140. h120020146.png ; $\Gamma _ { \phi }$ ; confidence 0.929

141. n12011079.png ; $x \rightarrow \overline { f } _ { \alpha } ( x )$ ; confidence 0.929

142. n1201003.png ; $f : \mathbf{R} \times \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.929

143. q13003022.png ; $P _ { 0 } \psi / p _ { 0 }$ ; confidence 0.929

144. e12009020.png ; $( d \sigma ) ^ { 2 } = g _ { \mu \nu } d x ^ { \mu } d x ^ { \nu },$ ; confidence 0.929

145. a130240374.png ; $F = \mathbf{Z} _ { 1 } \mathbf{M} _ { E } ^ { - 1 } \mathbf{Z} _ { 1 } ^ { \prime }$ ; confidence 0.929

146. m12013040.png ; $N_* = K$ ; confidence 0.929

147. g12003025.png ; $p \equiv 1$ ; confidence 0.929

148. c12008023.png ; $A \in C ^ { m \times n }$ ; confidence 0.929

149. h12004024.png ; $\xi < \kappa$ ; confidence 0.929

150. b12005030.png ; $\operatorname { dist } ( B , U ^ { c } ) > 0$ ; confidence 0.929

151. b13003056.png ; $V _ { y } ^ { \sigma }$ ; confidence 0.928

152. a13032050.png ; $\sigma ^ { 2 } = .25$ ; confidence 0.928

153. a12012072.png ; $( A , I )$ ; confidence 0.928

154. a12011025.png ; $T ( 0 , n ) = 2 n,$ ; confidence 0.928

155. w12001016.png ; $= z ^ { n + m } ( f ( D + m ) g ( D ) - f ( D ) g ( D + n ) ) +$ ; confidence 0.928

156. i130090111.png ; $e _ { n } = \lambda _ { p } ( K / k ) n + \mu _ { p } ( K / k ) p ^ { n } + \nu _ { p } ( K / k )$ ; confidence 0.928

157. j13004044.png ; $8 _ { 17 }$ ; confidence 0.928

158. e120190200.png ; $W _ { 2 } ^ { + }$ ; confidence 0.928

159. k05584042.png ; $J ^ { 2 } = I$ ; confidence 0.928

160. n12012040.png ; $\mathcal{P} \subset \mathcal{NP}$ ; confidence 0.928

161. j130040128.png ; $v = \pm 1$ ; confidence 0.928

162. a11001015.png ; $\hat{x}$ ; confidence 0.928

163. k055840117.png ; $x , y \in \mathcal{K}$ ; confidence 0.928

164. s120040106.png ; $\operatorname { ch } ( \chi ) = \frac { 1 } { n ! } \sum _ { | \mu | = n } k _ { \mu } \chi _ { \mu } p _ { \mu },$ ; confidence 0.928

165. m13013022.png ; $L = [ I _ {i j } ] = M M ^ { T }$ ; confidence 0.928

166. m12007011.png ; $P ( x ) = a _ { 0 } \prod _ { k = 1 } ^ { d } ( x - \alpha _ { k } )$ ; confidence 0.928

167. f120230102.png ; $[\mathcal{L} _ { K } , i _ { L } ] = i ( [ K , L ] ) - ( - 1 ) ^ { k \text{l} } \mathcal{L} ( i _ { L } K ).$ ; confidence 0.928

168. a130050280.png ; $N _ { G } ^ { \# } ( x ) = \sum _ { n \leq x } G ^ { \# } ( n )$ ; confidence 0.928

169. k055840309.png ; $\Theta ( z ) = U _ { 22 } + z U _ { 21 } ( I - z U _ { 11 } ) ^ { - 1 } U _ { 12 } \quad ( z \in \mathcal{D} )$ ; confidence 0.928

170. f130090104.png ; $0 < q _ { j } < 1$ ; confidence 0.928

171. i05218048.png ; $S _ { N }$ ; confidence 0.928

172. h13006044.png ; $D \beta D = \coprod _ { \beta ^ { \prime } \in A } D \beta ^ { \prime }$ ; confidence 0.928

173. n12006033.png ; $T ^ { * } T$ ; confidence 0.928

174. b12051022.png ; $d ^ { T } \nabla f ( x _ { c } ) < 0$ ; confidence 0.928

175. b130200140.png ; $- ( a | \omega ( a ) ) > 0$ ; confidence 0.928

176. h04601042.png ; $( W ; M _ { 0 } , M _ { 1 } )$ ; confidence 0.928

177. f120110104.png ; $\mathcal{P} * ( K ) ^ { \prime }$ ; confidence 0.927

178. n12011030.png ; $\xi _ { i } ( x ) > 0$ ; confidence 0.927

179. q1200207.png ; $T \in \operatorname { Mat } ( n ) \otimes \mathcal{A}$ ; confidence 0.927

180. p13013033.png ; $\operatorname {SP} ^ { + } ( n )$ ; confidence 0.927

181. s12033012.png ; $\lambda ( v - 1 ) = k ( k - 1 )$ ; confidence 0.927

182. i12008016.png ; $S _ { i } = - 1$ ; confidence 0.927

183. d03372072.png ; $k \geq 2$ ; confidence 0.927

184. h12012020.png ; $D ( \phi ) = d \gamma \phi + \phi d \gamma$ ; confidence 0.927

185. e12023020.png ; $L : E ^ { 1 } \rightarrow \mathbf{R}$ ; confidence 0.927

186. e12019014.png ; $( c , d )$ ; confidence 0.927

187. j13001011.png ; $Q _ { D } ( v , z ) \in \mathbf{Z} [ v ^ { \pm 1 } , z ^ { 2 } ]$ ; confidence 0.927

188. i120080109.png ; $\chi ( \chi \propto ( T / T _ { c } - 1 ) ^ { - \gamma } \text { with } \gamma = 1 )$ ; confidence 0.927

189. t120060103.png ; $Z ^ { - 1 / 3 }$ ; confidence 0.927

190. t120200170.png ; $\operatorname { min}_r \operatorname { Re } G _ { 2 } ( r ) \leq - A$ ; confidence 0.927

191. e12021027.png ; $\sigma : E \rightarrow E$ ; confidence 0.927

192. t130050138.png ; $\overline { \operatorname { Ran } D _ { A } } \neq \operatorname { Ker } D _ { A }$ ; confidence 0.927

193. h12002028.png ; $f _ { I } = ( 1 / | I | ) \int _ { I } f d m$ ; confidence 0.927

194. w12011070.png ; $\Phi = E \oplus E ^ { * }$ ; confidence 0.927

195. a13026014.png ; $\zeta ( 3 )$ ; confidence 0.927

196. d12014022.png ; $x = u + 1 / u = 2 \operatorname { cos } \alpha$ ; confidence 0.927

197. d12014016.png ; $( x ^ { 2 } - 4 a ) y ^ { \prime \prime } + x y ^ { \prime } - n ^ { 2 } y = 0.$ ; confidence 0.927

198. a01084024.png ; $M ^ { * }$ ; confidence 0.927

199. r08259030.png ; $\alpha ^ { * * } = \alpha$ ; confidence 0.927

200. d13018025.png ; $J _ { E } = I _ { E }$ ; confidence 0.927

201. b130200159.png ; $\alpha _ { i } \in \Pi ^ { \text{re} }$ ; confidence 0.927

202. c12031026.png ; $\| f \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { \infty },$ ; confidence 0.927

203. x12002031.png ; $\delta ( I _ { \delta } ) \subseteq R$ ; confidence 0.927

204. e120230156.png ; $= \int _ { M } \sigma ^ { k ^ { * } } \mathcal{L} _ { Z ^ { k } } ( L \Delta ).$ ; confidence 0.927

205. z13003018.png ; $f ( a t + a k )$ ; confidence 0.927

206. m12013028.png ; $\frac { d N } { d t } = \frac { d n } { d t } = f ( N ) =$ ; confidence 0.927

207. j13004028.png ; $3_1$ ; confidence 0.927

208. h13003025.png ; $j > n$ ; confidence 0.927

209. w1202002.png ; $I [ f ] = \int _ { a } ^ { b } f ( x ) d x$ ; confidence 0.926

210. s12026055.png ; $\int _ { 0 } ^ { t } \phi ( s ) d B ( s + ) : = \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s + } ) \phi ( s ) d s.$ ; confidence 0.926

211. e13007090.png ; $m _ { i } , n _ { i } \leq P$ ; confidence 0.926

212. k12010017.png ; $\{ t = t _ { j } \} \subset \mathbf{R} ^ { 3 }$ ; confidence 0.926

213. b1302207.png ; $W _ { 2 } ^ { 1 }$ ; confidence 0.926

214. l11003066.png ; $M ( \mathcal{E} )$ ; confidence 0.926

215. f1202303.png ; $\Omega ( M , T M ) = \oplus _ { k = 0 } ^ { \operatorname { dim } M } \Omega ^ { k } ( M , T M )$ ; confidence 0.926

216. e12023060.png ; $D = \frac { \partial } { \partial x } + y ^ { \prime } \frac { \partial } { \partial y } + y ^ { \prime \prime } \frac { \partial } { \partial y ^ { \prime } }.$ ; confidence 0.926

217. q13005079.png ; $h = F \circ f ^ { - 1 }$ ; confidence 0.926

218. e120240107.png ; $Y _ { 1 } ( N )$ ; confidence 0.926

219. a01245028.png ; $S ^ { 1 } \times S ^ { 3 }$ ; confidence 0.926

220. l06003029.png ; $P Q = a$ ; confidence 0.926

221. m130180166.png ; $\mu ( M ) = \mu ( M \backslash a ) - \mu ( M / a ),$ ; confidence 0.926

222. a13007073.png ; $n ^ { \prime }$ ; confidence 0.926

223. e12023024.png ; $y : M \rightarrow F$ ; confidence 0.926

224. f13016040.png ; $j - \operatorname { Spec } ( R )$ ; confidence 0.926

225. s13062062.png ; $m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } \left( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } \right) d \rho _ { 0 } ( t ),$ ; confidence 0.926

226. q12005045.png ; $\frac { d } { d \alpha } f ( x ^ { k } + \alpha d ^ { k } ) | _ { \alpha = 0 } = D f ( x ^ { k } ) d ^ { k } =$ ; confidence 0.926

227. i13007030.png ; $\forall \alpha ^ { \prime }$ ; confidence 0.926

228. m13002037.png ; $\frac { d T _ { 1 } } { d s } = [ T _ { 2 } , T _ { 3 } ] , \frac { d T _ { 2 } } { d s } = [ T _ { 3 } , T _ { 1 } ] , \frac { d T _ { 3 } } { d s } = [ T _ { 1 } , T _ { 2 } ],$ ; confidence 0.926

229. t120200164.png ; $\phi ( z ) = z ^ { k } + a _ { 1 } z ^ { k - 1 } + \ldots + a _ { k } \neq 0$ ; confidence 0.926

230. w13005018.png ; $F W = F ^ { 2 ( k + 1 ) } W ( G , K ) \subseteq W ( G , K ),$ ; confidence 0.926

231. e120190103.png ; $S = X$ ; confidence 0.926

232. c020740250.png ; $\geq 0$ ; confidence 0.926

233. o13001067.png ; $i _ { 2 } : H ^ { 1 } ( D _ { R } ^ { \prime } ) \rightarrow L ^ { 2 } ( S )$ ; confidence 0.926

234. d1102209.png ; $c > a$ ; confidence 0.926

235. d03024021.png ; $f _{( r - 2 )} ( x _ { 0 } )$ ; confidence 0.926

236. d120230106.png ; $A = \operatorname { diag } \{ a _ { i } \}$ ; confidence 0.926

237. f120110135.png ; $f = \sum _ { k } f _ { \Delta _ { k } }$ ; confidence 0.926

238. k13002015.png ; $( x _ { j } - x _ { k } ) ( y _ { j } - y _ { k } ) < 0$ ; confidence 0.926

239. a120050131.png ; $\mathbf{R} \times \mathbf{R} ^ { m }$ ; confidence 0.926

240. t13013071.png ; $D ^ { b } ( \Lambda )$ ; confidence 0.926

241. l12010046.png ; $L _ { \gamma , 1 } = \frac { 1 } { \sqrt { \pi } ( \gamma - \frac { 1 } { 2 } ) } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 / 2 ) } \left( \frac { \gamma - \frac { 1 } { 2 } } { \gamma + \frac { 1 } { 2 } } \right) ^ { \gamma + 1 / 2 }$ ; confidence 0.926

242. c020540188.png ; $s \geq 0$ ; confidence 0.926

243. g13006011.png ; $\Delta _ { \delta } ( \alpha ) : = \{ z \in \mathbf{C} : | z - \alpha | \leq \delta \}$ ; confidence 0.926

244. b01557024.png ; $k \leq n$ ; confidence 0.926

245. c02747087.png ; $( K , L )$ ; confidence 0.926

246. a01414019.png ; $\wedge$ ; confidence 0.926

247. h12002054.png ; $( \hat { \phi } ( - j - k - 1 ) )_{ j > 0 , k \geq 0}$ ; confidence 0.925

248. a13027049.png ; $T _ { n_ j } ( x _ { n_j } ) \rightarrow g$ ; confidence 0.925

249. b1302709.png ; $\mathcal{K} ( \mathcal{H} )$ ; confidence 0.925

250. b130290123.png ; $H _ { \mathfrak{m} } ^ { i } ( A ) = ( 0 )$ ; confidence 0.925

251. m13013055.png ; $\nu ^ { 3 }$ ; confidence 0.925

252. f13012032.png ; $C _ { G } ( A )$ ; confidence 0.925

253. f12010057.png ; $( 2 / \pi ) \operatorname { sin } ^ { 2 } \phi d \phi$ ; confidence 0.925

254. a12028073.png ; $A \in \mathcal{L} _ { w } ( \mathcal{X} , \mathcal{Y} )$ ; confidence 0.925

255. b12052059.png ; $B + u v ^ { T }$ ; confidence 0.925

256. m12016016.png ; $| \Sigma | ^ { - n / 2 } | \Phi | ^ { - p / 2 } h ( \operatorname { tr } \left( ( X - M ) ^ { \prime } \Sigma ^ { - 1 } ( X - M ) \Phi ^ { - 1 } ) \right),$ ; confidence 0.925

257. q12001099.png ; $\mathfrak { h } = \{ X \in \mathfrak { g } : \tau ( X ) = X \}$ ; confidence 0.925

258. m12016012.png ; $\Phi \geq 0$ ; confidence 0.925

259. r13008074.png ; $K ( p , q )$ ; confidence 0.925

260. b13004062.png ; $E = X$ ; confidence 0.925

261. m12011056.png ; $\pi _ { 1 } ( \overline { M } )$ ; confidence 0.925

262. m13014058.png ; $\int _ { B } ( f \circ \psi ) d m = f ( \psi ( 0 ) )$ ; confidence 0.925

263. t13011011.png ; $- \otimes _ { B } T$ ; confidence 0.925

264. l13005029.png ; $L ( \mathbf{a} ) = \infty$ ; confidence 0.925

265. i13005022.png ; $r _ { \pm } ( - k ) = \overline { r _ { \pm } ( k ) }$ ; confidence 0.925

266. v13005082.png ; $m , n \in \mathbf{Z}$ ; confidence 0.925

267. b12018065.png ; $ \operatorname { WB} ( \mathcal{L} )$ ; confidence 0.925

268. a012460143.png ; $Q _ { 1 }$ ; confidence 0.925

269. f1300907.png ; $U _ { n + 1 } ( x ) U _ { n - 1 } ( x ) - U _ { n } ^ { 2 } ( x ) = ( - 1 ) ^ { n } ;$ ; confidence 0.925

270. w130080163.png ; $\psi ( z _ { 0 } , \overline{z} _ { 0 } ) = I$ ; confidence 0.925

271. b11022014.png ; $h ( X ) = h ^ { 0 } ( X ) \oplus \ldots \oplus h ^ { 2 n } ( X )$ ; confidence 0.925

272. h13006040.png ; $v = D \beta D$ ; confidence 0.925

273. f12002035.png ; $P , Q \in K [ X ]$ ; confidence 0.925

274. b120150121.png ; $\Omega = ( \mathbf{N} \cup \{ 0 \} ) ^ { m }$ ; confidence 0.925

275. k1201107.png ; $\frac { \partial } { \partial t _ { j } } \mathcal{L} = [ ( \mathcal{L} ^ { j } ) _ { + } , \mathcal{L} ],$ ; confidence 0.925

276. a13020014.png ; $x , y , z , u , v , w \in V$ ; confidence 0.925

277. m12013035.png ; $f ^ { \prime } ( N _{*} ) > 0$ ; confidence 0.925

278. j12002072.png ; $A ^ { * } = \operatorname { sup } _ { t \geq 0 } | A _ { t } | \leq \frac { 1 } { \mathsf{P} [ T < \infty ] }.$ ; confidence 0.925

279. s1200204.png ; $L ( . \ ; 0 ) = f ( . )$ ; confidence 0.925

280. o13006088.png ; $\Phi ^ { ( 2 ) } = \Phi ^ { ( 1 ) } U.$ ; confidence 0.925

281. e120190145.png ; $S ( f ( m ) , \rho )$ ; confidence 0.924

282. b110380123.png ; $T ( G )$ ; confidence 0.924

283. f1301909.png ; $x _ { j } = \pi j / N$ ; confidence 0.924

284. c1301001.png ; $( X , \mathcal{A} )$ ; confidence 0.924

285. k05584022.png ; $\mathcal{K}_{-}$ ; confidence 0.924

286. d1201106.png ; $\{ x_{j} \}$ ; confidence 0.924

287. z13008045.png ; $= \frac { ( - 1 ) ^ { k + l } } { ( \alpha + 1 ) _ { k + l } } ( 1 - z \overline{z} ) ^ { - \alpha } ( \frac { \partial } { \partial z } ) ^ { l } ( \frac { \partial } { \partial \overline{z} } ) ^ { k } ( 1 - z \overline{z} ) ^ { k + l + \alpha }.$ ; confidence 0.924

288. n13002030.png ; $\cup$ ; confidence 0.924

289. w13014018.png ; $H ( x ) = 0$ ; confidence 0.924

290. c12030093.png ; $\omega \{ K _ { i } \}$ ; confidence 0.924

291. l11001014.png ; $( \alpha > 0 ) \& ( a \preceq b ) \Rightarrow ( \alpha a \preceq \alpha c ).$ ; confidence 0.924

292. j13002034.png ; $\mathbf{G} ( n , p )$ ; confidence 0.924

293. h12003010.png ; $\tau ( \varphi ) = \text { trace } \nabla d \varphi$ ; confidence 0.924

294. f13021037.png ; $B ( G ) = B ( G _ { d } ) \cap C ( G ; \mathbf{C} )$ ; confidence 0.924

295. w12011078.png ; $[ X , Y ] = \langle \sigma X , Y \rangle _ { \Phi } ^ { * } , \Phi },$ ; confidence 0.924

296. e03550078.png ; $\overline{\Omega}$ ; confidence 0.924

297. h13002081.png ; $N ( q , r )$ ; confidence 0.924

298. e12021045.png ; $( p _ { m } ( x ) ) _ { m \geq 1 }$ ; confidence 0.924

299. f13021028.png ; $\{ u \in B ( G ) : \| u \| _ { B ( G ) } = 1 \}$ ; confidence 0.924

300. a130040751.png ; $r \in R$ ; confidence 0.924

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/30. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/30&oldid=45483