User:Maximilian Janisch/latexlist/latex/NoNroff/38
List
1. ; $p \in C^{-}$ ; confidence 0.843
2. ; $= \operatorname { exp } \left( - x \int _ { 0 } ^ { \infty } ( 1 - e ^ { - u v } ) \frac { 1 } { \sqrt { 2 \pi v ^ { 3 } } } d v \right) =$ ; confidence 0.843
3. ; $2 \pi k / N$ ; confidence 0.843
4. ; $\Gamma \vDash_{ \mathcal{S} _ { P }} \varphi$ ; confidence 0.843
5. ; $g ( u _ { 1 } ) \leq v ^ { * }$ ; confidence 0.843
6. ; $M , N \in \{ A_i \} _ { i = 1 } ^ { k }$ ; confidence 0.843
7. ; $\operatorname{II} _ { 1 }$ ; confidence 0.843
8. ; $\mathfrak { G } = K.AN$ ; confidence 0.843
9. ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h,$ ; confidence 0.843
10. ; $\operatorname { deg } F \leq 100$ ; confidence 0.843
11. ; $2 ^ { X }$ ; confidence 0.843
12. ; $k _ { G } = 0$ ; confidence 0.843
13. ; $W _ { + }$ ; confidence 0.843
14. ; $\mathbf{FRM}$ ; confidence 0.843
15. ; $m \leq 6$ ; confidence 0.843
16. ; $\varphi \in \operatorname{HP} ^ { 0 } ( A )$ ; confidence 0.843
17. ; $\operatorname{grad} \psi \neq 0$ ; confidence 0.843
18. ; $n - r \geq p$ ; confidence 0.843
19. ; $\sigma 2$ ; confidence 0.843
20. ; $\mu_{l}$ ; confidence 0.842
21. ; $z = m l + b / 2$ ; confidence 0.842
22. ; $\varphi ( \alpha , b , 0 ) = \alpha + b,$ ; confidence 0.842
23. ; $\pi _ { 1 } ( M ) = \mathbf{Z}$ ; confidence 0.842
24. ; $f _ { 1 } , \dots , f _ { N }$ ; confidence 0.842
25. ; $q = p ^ { m }$ ; confidence 0.842
26. ; $\operatorname { lim } _ { t \rightarrow \infty } a ( t ) = \frac { \int _ { 0 } ^ { \infty } b ( u ) d u } { \int _ { 0 } ^ { \infty } u d F ( u ) }.$ ; confidence 0.842
27. ; $a : 1 - a$ ; confidence 0.842
28. ; $\operatorname { Ext } ( X )$ ; confidence 0.842
29. ; $H ^ { \infty } + C = \{ f + g : f \in C ( \mathbf{T} ) , g \in H ^ { \infty } \}$ ; confidence 0.842
30. ; $V ( \mathfrak { g } , \mathfrak { b } )$ ; confidence 0.842
31. ; $f \in G$ ; confidence 0.842
32. ; $( r _ { 1 } , r _ { 2 } )$ ; confidence 0.842
33. ; $\textsf{E}[W]_{\text{FCFS}} = \frac { 1 } { 2 ( 1 - \rho ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) },$ ; confidence 0.842
34. ; $S _ { 0 }$ ; confidence 0.842
35. ; $\mathcal{N P} \neq \mathcal{P}$ ; confidence 0.842
36. ; $2 ^ { d - 1 } ( d + 1 )$ ; confidence 0.842
37. ; $x _ { \alpha } ( t ) = \sum _ { i = 0 } ^ { \infty } t ^ { i } \otimes e _ { \alpha } ^ { i } / i !$ ; confidence 0.841
38. ; $E ( k , \omega )$ ; confidence 0.841
39. ; $Y \subset X$ ; confidence 0.841
40. ; $( V _ { g } f ) ( \theta , t ) = ( 2 \pi t ) ^ { - 1 } \int _ { S ^ { 2 } } f ( \sigma ) g \left( \frac { 1 - \theta . \sigma } { t } \right) d \sigma$ ; confidence 0.841
41. ; $\sigma _ { r } ( A ) = \sigma _ { T } ( A ) = \mathbf{B} _ { 4 }$ ; confidence 0.841
42. ; $B ^ { \prime } = \alpha_{*} B$ ; confidence 0.841
43. ; $\tilde{\mathcal{O}}$ ; confidence 0.841
44. ; $\varepsilon$ ; confidence 0.841
45. ; $W _ { 2 } = S _ { 2 } e ^ { \sum _ { 1 } ^ { \infty } y _ { k } ( \Lambda ^ { t } ) ^ { k } };$ ; confidence 0.841
46. ; $| x | < e$ ; confidence 0.841
47. ; $\mathcal{S} = ( f _ { i } : B \rightarrow A _ { i } ) _ { I }$ ; confidence 0.841
48. ; $\sum _ { k = 0 } ^ { \infty } \left| c _ { k } z ^ { k } \right| < 1$ ; confidence 0.841
49. ; $\{ S _ { i } \} _ { i = 1 } ^ { n }$ ; confidence 0.841
50. ; $L = \sum _ { n = 0 } ^ { N } a ^ { [ n ] } ( z ) z ^ { n } \left( \frac { d } { d z } \right) ^ { n },$ ; confidence 0.841
51. ; $f \in Y$ ; confidence 0.841
52. ; $\mathcal{N} = 2 \rightarrow \mathcal{N} = 0$ ; confidence 0.841
53. ; $Z ( \alpha x ( n ) + \beta y ( n ) ) = \alpha Z ( x ( n ) ) + \beta Z ( y ( n ) ),$ ; confidence 0.841
54. ; $\operatorname { tr } ( K _ { i } ) \leq 1$ ; confidence 0.841
55. ; $\mathcal{R} _ { \text{nd} } ( \Omega ) = \mathcal{C} ^ { \infty } ( \Omega ) ^ { \text{N} } / \mathcal{I} _ { \text{nd} }$ ; confidence 0.841
56. ; $\alpha ( x , \xi ) = \int k \left( x + \frac { t } { 2 } , x - \frac { t } { 2 } \right) e ^ { - 2 i \pi t \xi } d t.$ ; confidence 0.841
57. ; $S = X X ^ { \prime }$ ; confidence 0.841
58. ; $\| \frac { d } { d t } A ( t ) ^ { - 1 } - \frac { d } { d s } A ( s ) ^ { - 1 } \| \leq K _ { 2 } | t - s | ^ { \eta },$ ; confidence 0.840
59. ; $D \in \operatorname { Der } A$ ; confidence 0.840
60. ; $K ^ { n } \subset M ^ { n + 2 }$ ; confidence 0.840
61. ; $= \frac { ( - 1 ) ^ { l } } { 2 } \Gamma ( \alpha + 1 ) \left( \frac { 2 } { s } \right) ^ { \alpha + 1 } J _ { k + l + \alpha + 1 } ( s ),$ ; confidence 0.840
62. ; $\psi _{0} = 1$ ; confidence 0.840
63. ; $\operatorname{sup} h( t )$ ; confidence 0.840
64. ; $p B _ { 2 n } \equiv p - 1 ( \operatorname { mod } p ^ { h + 1 } )$ ; confidence 0.840
65. ; $\left| \sum _ { \alpha } c _ { \alpha } z ^ { \alpha } \right| < 1,$ ; confidence 0.840
66. ; $z ^ { n } f ( D )$ ; confidence 0.840
67. ; $K _ { \lambda \mu }$ ; confidence 0.840
68. ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
69. ; $m \equiv 4$ ; confidence 0.840
70. ; $x , y \in \mathbf{R}$ ; confidence 0.840
71. ; $\chi _ { k - 1 } ^ { 2 } ( \alpha )$ ; confidence 0.840
72. ; $| \alpha . x _ { 0 } - p | < \delta$ ; confidence 0.840
73. ; $f ^ { * * } = ( f ^ { * } ) ^ { * }$ ; confidence 0.840
74. ; $f ( q _ { n } ) q _ { n } > c _ { 1 } ( \varphi ( q _ { n } ) / q _ { n } ) ^ { c _ { 2 } }$ ; confidence 0.840
75. ; $\varphi ( D ) = \operatorname { cr } ( D _ { L } ) - s ( D _ { L } ) + 1$ ; confidence 0.840
76. ; $C ( t )$ ; confidence 0.840
77. ; $\delta \geq k - j$ ; confidence 0.840
78. ; $H _ { R } \subset V$ ; confidence 0.840
79. ; $q , r \in \mathbf{N}$ ; confidence 0.840
80. ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i \varepsilon }$ ; confidence 0.839
81. ; $c = a q$ ; confidence 0.839
82. ; $\alpha \in \Phi$ ; confidence 0.839
83. ; $\Psi ( x , x ^ { 1 / u } ) \sim \rho ( u ) x$ ; confidence 0.839
84. ; $| f ^ { \prime } ( x ) | ^ { n } \leq K J _ { f } ( x )$ ; confidence 0.839
85. ; $\psi ( t )$ ; confidence 0.839
86. ; $\Gamma = \operatorname { Sp } ( 2 n , \mathbf{Z} )$ ; confidence 0.839
87. ; $\lambda _ { p } ( k _ { \infty } / k ) = \mu _ { p } ( k _ { \infty } / k ) = \nu _ { p } ( k _ { \infty } / k ) = 0$ ; confidence 0.839
88. ; $X = \partial / \partial_{ t }$ ; confidence 0.839
89. ; $e \in E$ ; confidence 0.839
90. ; $\operatorname{GF} ( m ) \subseteq K$ ; confidence 0.839
91. ; $BG_{q}$ ; confidence 0.839
92. ; $\operatorname { agm } ( a , b )$ ; confidence 0.839
93. ; $\mathcal{K} \oplus \mathcal{K} _ { 1 }$ ; confidence 0.839
94. ; $\operatorname{Mat} (p | q )$ ; confidence 0.839
95. ; $Y ( i ) \times I ^ { 2 } \rightarrow Y ( j )$ ; confidence 0.839
96. ; $\| f - p \| _ { 2 } = \left( \int \int _ { D } | f ( x , y ) - p ( x , y ) | ^ { 2 } d x d y \right) ^ { 1 / 2 }$ ; confidence 0.839
97. ; $\mathbf{P} ^ { 2 } ( \mathbf{R} )$ ; confidence 0.839
98. ; $Z ^ { N }$ ; confidence 0.839
99. ; $\tilde { M } \rightarrow M$ ; confidence 0.839
100. ; $a _ { n } = \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } a ( e ^ { i \theta } ) e ^ { - i n \theta } d \theta.$ ; confidence 0.839
101. ; $\Sigma _ { P }$ ; confidence 0.839
102. ; $\overline{X} _ { n } = \operatorname { sup } _ { t } X _ { n } ( t )$ ; confidence 0.839
103. ; $P : C ( X ) \rightarrow \Pi _ { K \in \mathcal{K} } C ( G )$ ; confidence 0.838
104. ; $f ( z ) = \int _ { \partial D } f ( \zeta ) K _ { \text{BM} } ( \zeta , z ) - \int _ { D } \overline { \partial } f ( \zeta ) \bigwedge K _ { \text{BM} } ( \zeta , z ),$ ; confidence 0.838
105. ; $\mathcal{C}$ ; confidence 0.838
106. ; $0 \leq S \leq T$ ; confidence 0.838
107. ; $\sigma ( A | _ { L } ) = \tau$ ; confidence 0.838
108. ; $\hat { E } = 1 / P ( \xi )$ ; confidence 0.838
109. ; $G _ { \tau }$ ; confidence 0.838
110. ; $f = \lambda ^ { n } + a _ { n - 1 } \lambda ^ { n - 1 } + \ldots + a _ { 1 } \lambda + a _ { 0 }$ ; confidence 0.838
111. ; $W ^ { ( i ) } = \{ w \in W : l ( w ) = i \}$ ; confidence 0.838
112. ; $| x _ { 1 } | \geq \ldots \geq | x _ { m } |$ ; confidence 0.838
113. ; $( \mathcal{M} _ { s } f ) ( t ) = \frac { 1 } { 2 } \operatorname { sup } _ { s } f ( s , t ) + \frac { 1 } { 2 } \operatorname { inf } _ { s } f ( s , t )$ ; confidence 0.838
114. ; $K ^ { 2 } \nearrow K ^ { 2 } \cup _ { B ^ { 2 } } B ^ { 3 } \searrow L ^ { 2 }$ ; confidence 0.838
115. ; $\sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } E ^ { n - i } = 0$ ; confidence 0.838
116. ; $x = t _ { 1 } ^ { 2 } t _ { 2 }$ ; confidence 0.838
117. ; $y _ { i j k }$ ; confidence 0.838
118. ; $x = f ( \overline { u } ).$ ; confidence 0.838
119. ; $a \cup b$ ; confidence 0.838
120. ; $\int _ { 1 } ^ { \infty } g _ { \Phi } ( t ) d t < \infty$ ; confidence 0.837
121. ; $\operatorname{epi} ( f )$ ; confidence 0.837
122. ; $\alpha ^ { \prime } \in S ^ { 2 } , \alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.837
123. ; $m \geq 8$ ; confidence 0.837
124. ; $\operatorname { det } [ E \lambda - A ] \neq 0$ ; confidence 0.837
125. ; $I \geq 0$ ; confidence 0.837
126. ; $\leq K _ { 0 } \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T.$ ; confidence 0.837
127. ; $( s _ { 1 } , \dots , s _ { k } )$ ; confidence 0.837
128. ; $x ( \infty ) = \operatorname { lim } _ { n \rightarrow \infty } x ( n ) = \operatorname { lim } _ { z \rightarrow 1 } ( z - 1 ) Z ( x ( n ) )$ ; confidence 0.837
129. ; $\alpha_{.} = 0$ ; confidence 0.837
130. ; $v = \Theta _ { \Delta } ( z ) u$ ; confidence 0.837
131. ; $n = n _ { 1 } n _ { 2 }$ ; confidence 0.837
132. ; $\textsf{P} \{ w \in \partial G \} = 0$ ; confidence 0.837
133. ; $\Phi ( q ) = \left\{ \begin{array} { l l } { + \infty } & { \text { if } | q | \leq \sigma , } \\ { 0 } & { \text { if } | q | > \sigma , } \end{array} \right.$ ; confidence 0.837
134. ; $b = b _ { 0 }$ ; confidence 0.837
135. ; $P M _ { 2 } ( G )$ ; confidence 0.837
136. ; $\Gamma \subset G ( \mathbf{Q} )$ ; confidence 0.837
137. ; $V _ { k + l } ^ { k - l } ( 1,0 ; \alpha ) = 1$ ; confidence 0.837
138. ; $N \leq Z : = \sum _ { j = 1 } ^ { K } Z _ { j }$ ; confidence 0.837
139. ; $K ( x , t ) = - \frac { 1 } { \pi } \frac { \partial } { \partial n _ { t } } \operatorname { log } | z - t | , z , t \in C,$ ; confidence 0.837
140. ; $C ^ { - } = - C ^ { + }$ ; confidence 0.837
141. ; $\Lambda ( s , \rho ) = W ( \rho ) . \Lambda ( 1 - s , \overline { \rho } ),$ ; confidence 0.837
142. ; $R _ { \epsilon } ( X )$ ; confidence 0.837
143. ; $B _ { n } ( D )$ ; confidence 0.837
144. ; $\Delta _ { \varepsilon } ( t + 2 \pi ) = \Delta _ { \varepsilon } ( t )$ ; confidence 0.837
145. ; $J _ { i j } = J$ ; confidence 0.837
146. ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837
147. ; $\mathcal{U} ( \mathfrak { g } )$ ; confidence 0.837
148. ; $x = x ^ { \prime }$ ; confidence 0.836
149. ; $h _ { \theta } ^ { * } = \nabla h ( \theta ^ { * } ),$ ; confidence 0.836
150. ; $X = \operatorname { cl } ( M \backslash ( K \times D ^ { 2 } ) )$ ; confidence 0.836
151. ; $\| U _ { X } ( x ^ { * } ) \| = \| x \| ^ { 3 }$ ; confidence 0.836
152. ; $u ( x ) = - \int _ { H } g ( x , y ; H ) d \mu ( y ) + h ^ { * } ( x ),$ ; confidence 0.836
153. ; $x _ { 0 } \in \mathbf{R} ^ { n }$ ; confidence 0.836
154. ; $\square ^ { 1 }$ ; confidence 0.836
155. ; $P _ { \mu } = \operatorname{Id}$ ; confidence 0.836
156. ; $x _ { i j } ^ { \nu }$ ; confidence 0.836
157. ; $N ^ { ( n - 1 ) / 2 }$ ; confidence 0.836
158. ; $T _ { n } ^ { * } ( x )$ ; confidence 0.836
159. ; $\{ a b c \} = a b c + c b a$ ; confidence 0.836
160. ; $| \delta | \leq 1$ ; confidence 0.836
161. ; $\square x \rightarrow y$ ; confidence 0.836
162. ; $1 - p _ { 0 } = \| P _ { 1 } \psi \| ^ { 2 }$ ; confidence 0.836
163. ; $\mathbf{G} (\operatorname{exp} ( G ) )$ ; confidence 0.836
164. ; $Z ( x ( n + k ) ) = z ^ { k } Z ( x ( n ) ) - \sum _ { r = 0 } ^ { k - 1 } x ( r ) z ^ { k - r }$ ; confidence 0.836
165. ; $T P / G$ ; confidence 0.836
166. ; $\operatorname{dim}_{\text{Q}} H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( m ) ) _ { Z } ^ { 0 } < \infty$ ; confidence 0.836
167. ; $\langle \lambda | f ( z ) ) = \frac { 1 } { \lambda - z } \langle \lambda | V \phi ) ( \phi , f ( z ) ),$ ; confidence 0.836
168. ; $\varphi_{-} ( k ) = f ( - k )$ ; confidence 0.836
169. ; $v _ { 1 } , v _ { 2 } \in R$ ; confidence 0.836
170. ; $\wedge ^ { N } L ^ { 2 } ( \mathbf{R} ^ { 3 } ; \mathbf{C} ^ { 2 } )$ ; confidence 0.836
171. ; $u \in L _ { \text{C} } ^ { \infty } ( \hat { G } )$ ; confidence 0.835
172. ; $y \in Y$ ; confidence 0.835
173. ; $x _ { i } + t _ { i } v _ { i } \in S$ ; confidence 0.835
174. ; $\frac { d } { d t } \frac { \partial L } { \partial \dot { q } } - \frac { \partial L } { \partial q } = \tau,$ ; confidence 0.835
175. ; $\psi [ 1 ] = \psi _ { x } + \sigma \psi ; \quad \sigma = - \varphi _ { x } \varphi ^ { - 1 }$ ; confidence 0.835
176. ; $| R | > \varepsilon q ^ { n }$ ; confidence 0.835
177. ; $q ^ { \text{th} }$ ; confidence 0.835
178. ; $\sum _ { x \in f ^{ - 1} ( 0 ) \cap \partial K } \text { sign det } f ^ { \prime } ( x )$ ; confidence 0.835
179. ; $A x = \int _ { - \| A \| } ^ { \| A \| } \lambda E ( d \lambda ) x + N x,$ ; confidence 0.835
180. ; $\{ A _ { 1 } , \dots , A _ { k } \}$ ; confidence 0.835
181. ; $S S ^ { * } = 1 - P$ ; confidence 0.835
182. ; $= \mathfrak { g }$ ; confidence 0.835
183. ; $x \in \mathcal{D} ( T )$ ; confidence 0.835
184. ; $( x , y ) = [ x _ { + } , y _ { + } ] - [ x _ { - } , y _ { - } ],$ ; confidence 0.835
185. ; $\tau _ { 2 } : \otimes ^ { 2 } \mathcal{E} \rightarrow \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.835
186. ; $\mathbf{c} ^ { \text{em} } =\mathbf{f} ^ { \text{em} } \times \mathbf{x} + ( \mathbf{P} \times \mathbf{E} ^ { \prime } + \mathbf{M} ^ { \prime } \times \mathbf{B} ),$ ; confidence 0.835
187. ; $\Sigma ^ { ( t + 1 ) } = \frac { 1 } { n } \sum _ { i } w _ { i } ^ { ( t + 1 ) } ( y _ { i } - \mu ^ { ( t + 1 ) } ) ( y _ { i } - \mu ^ { ( t + 1 ) } ) ^ { T }.$ ; confidence 0.835
188. ; $T = c _ { 1 } \lambda ^ { p } ( \delta _ { x _ { 1 } } ) + \ldots + c _ { n } \lambda ^ { p } ( \delta _ { x _ { n } } )$ ; confidence 0.835
189. ; $\omega_0$ ; confidence 0.835
190. ; $( \mathcal{S} ^ { \prime } ( \mathbf{R} ) , \mathcal{B} , d \mu )$ ; confidence 0.834
191. ; $e _ { 1 } \leq e _ { 2 } \leq \ldots < 0$ ; confidence 0.834
192. ; $x ^ { 0 } = \operatorname { cosh } u ^ { 1 } \operatorname { cosh } u ^ { 2 } \ldots \operatorname { cosh } u ^ { n },$ ; confidence 0.834
193. ; $Y _ { t }$ ; confidence 0.834
194. ; $+ ( - 1 ) ^ { q + k _ { 1 } } d \omega \bigwedge i ( K _ { 1 } ) K _ { 2 }.$ ; confidence 0.834
195. ; $I \subset \mathbf{R}$ ; confidence 0.834
196. ; $\int _ { 0 } ^ { + \infty } \beta ( \sigma , S ^ { * } ) e ^ { - \int _ { 0 } ^ { \sigma } \mu ( s , S ^ { * } ) d s } d \sigma = 1.$ ; confidence 0.834
197. ; $( d / d z ) f _ { i }$ ; confidence 0.834
198. ; $\mathbf{T} ^ { 2 }$ ; confidence 0.834
199. ; $i : \overline { H } ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ ; confidence 0.834
200. ; $M \in \mathcal{O}$ ; confidence 0.834
201. ; $\Theta \mathbf{b}$ ; confidence 0.834
202. ; $I \subseteq S$ ; confidence 0.834
203. ; $H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) ) = K ^ { ( j ) _{ 2 j - i}} ( X )$ ; confidence 0.834
204. ; $1 \leq n$ ; confidence 0.834
205. ; $x \in \mathbf{R} : = ( - \infty , \infty ),$ ; confidence 0.834
206. ; $\Gamma = \operatorname { Cay } ( G , S )$ ; confidence 0.834
207. ; $( \mathcal{Q} , \mu )$ ; confidence 0.834
208. ; $m ^ { \nu ( c ) }$ ; confidence 0.834
209. ; $Z ( e ) = \operatorname { log } _ { \omega } ( 1 + \omega ^ { e } )$ ; confidence 0.834
210. ; $\{ e _ { a } \}$ ; confidence 0.834
211. ; $g ^ { n } = 1$ ; confidence 0.833
212. ; $\varepsilon _ { X } ^ { \mathcal{C} U } ( g ) = \varepsilon _ { X } ^ { \mathcal{C} U } ( f )$ ; confidence 0.833
213. ; $\overline { D } _ { m } \subset D _ { m + 1 } \subset D$ ; confidence 0.833
214. ; $\frac { d } { d t } V _ { t } = P + \delta V _ { t } - \mu _ { x + t} ( S - V _ { t } ),$ ; confidence 0.833
215. ; $\theta ( x )$ ; confidence 0.833
216. ; $3\text{l}$ ; confidence 0.833
217. ; $\Psi _ { W , V } ^ { - 1 }$ ; confidence 0.833
218. ; $x _ { j } ^ { \prime }$ ; confidence 0.833
219. ; $\psi ( \underline{x} ^ { * } )$ ; confidence 0.833
220. ; $\partial _ { q } f ( x ) = \frac { f ( x ) - f ( q x ) } { x ( 1 - q ) } , \quad \partial _ { q } x ^ { n } = [ n ] _ { q } x ^ { n - 1 },$ ; confidence 0.833
221. ; $q _ { 0 } ( s ) = \left[ \frac { 1 - s } { 1 + s \alpha } \right] ^ { 1 / 2 } , \theta _ { 0 } ( s ) = \operatorname { cos } ^ { - 1 } q _ { 0 } ( s ),$ ; confidence 0.833
222. ; $q_0 > 1$ ; confidence 0.833
223. ; $\{ T _ { n } \}$ ; confidence 0.833
224. ; $D \subset \mathbf{C}$ ; confidence 0.833
225. ; $L _ { \gamma , n } \geq L _ { \gamma , n } ^ { c }.$ ; confidence 0.833
226. ; $s ^ { k } = x ^ { k + 1 } - x ^ { k }$ ; confidence 0.833
227. ; $F ( \tau ) = \int _ { 0 } ^ { \infty } f ( x ) d x \times$ ; confidence 0.833
228. ; $g ( x , k ) = e ^ { - i k x } + \int _ { - \infty } ^ { x } A _ { - } ( x , y ) e ^ { - i k y } d y,$ ; confidence 0.833
229. ; $\square ^ { t } a$ ; confidence 0.833
230. ; $\phi = Y _ { \text{mis} }$ ; confidence 0.832
231. ; $w ( a ) = x ( a ) y ( - a ^ { - 1 } ) x ( a )$ ; confidence 0.832
232. ; $\left( \begin{array} { c c c } { 1 } & { \ldots } & { ( m + n ) } \\ { s ( 1 ) } & { \cdots } & { s ( m + n ) } \end{array} \right),$ ; confidence 0.832
233. ; $\overline{\mathcal{H}}$ ; confidence 0.832
234. ; $( L , \leq , \otimes )$ ; confidence 0.832
235. ; $\check{\varphi} { P } ( x ) = \varphi ( x ^ { - 1 } )$ ; confidence 0.832
236. ; $\mu ( x ) = m ( x ^ { \prime } ) \times \lambda ( x ^ { \prime \prime } )$ ; confidence 0.832
237. ; $L ( G )$ ; confidence 0.832
238. ; $| G |$ ; confidence 0.832
239. ; $\partial _ { P } f ( x )$ ; confidence 0.832
240. ; $x \in \mathbf{R} ^ { d }$ ; confidence 0.832
241. ; $\operatorname { max } _ { 1 \leq j \leq n } | x _ { j } | > 0$ ; confidence 0.832
242. ; $\lfloor \frac { q - 1 } { n } \rfloor + 1 \leq | V _ { f } | \leq q.$ ; confidence 0.832
243. ; $\| A x - b \|$ ; confidence 0.832
244. ; $\chi ( P )$ ; confidence 0.832
245. ; $s \geq 1$ ; confidence 0.832
246. ; $M _ { n }$ ; confidence 0.832
247. ; $x = M _ { 1 }$ ; confidence 0.831
248. ; $( 1 ^ { l } )$ ; confidence 0.831
249. ; $\nu ( \zeta - a ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - \overline { a } _ { k } ) d \overline { \zeta } [ k ] \bigwedge d \zeta;$ ; confidence 0.831
250. ; $+ \int _ { \frac { x + y } { 2 } } ^ { \infty } d s \int _ { 0 } ^ { \frac { y - x } { 2 } } q ( s - t ) A ( s - t , s + t ) d t.$ ; confidence 0.831
251. ; $f \leq g$ ; confidence 0.831
252. ; $( 2 , d ) _ { P }$ ; confidence 0.831
253. ; $S ( \phi )$ ; confidence 0.831
254. ; $[ x , y ] _ { d } = [ x , d y ]$ ; confidence 0.831
255. ; $w _ { t t } = \lambda w$ ; confidence 0.831
256. ; $\mathfrak{H}$ ; confidence 0.831
257. ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
258. ; $\partial M$ ; confidence 0.831
259. ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
260. ; $L ^ { 1 } ( \mathbf{R} ) \cap L ^ { \infty } ( \mathbf{R} )$ ; confidence 0.831
261. ; $( \text { id } \otimes \pi ) \Delta f = f \otimes 1$ ; confidence 0.831
262. ; $\Omega ^ { \bullet } ( \tilde { \mathcal{M} } _ { \text{C} } )$ ; confidence 0.831
263. ; $\frac { \partial u } { \partial t } = L ( t , x , D _ { x } ) u + f ( t , x ) \text { in } [ 0 , T ] \times \Omega,$ ; confidence 0.831
264. ; $F _ { \nu }$ ; confidence 0.831
265. ; $R _ { i } S _ { i } ^ { - 1 }$ ; confidence 0.831
266. ; $[ P _ { j } , P _ { k } ] = [ Q _ { j } , Q _ { k } ] = 0 , \quad [ P _ { j } , Q _ { k } ] = \frac { \hbar } { i } \delta _ { j k } I$ ; confidence 0.831
267. ; $= \int _ { a } ^ { b } \left[ \frac { \partial L } { \partial y } ( \sigma ^ { 1 } ( x ) ) - \frac { d } { d x } ( \frac { \partial L } { \partial y ^ { \prime } } ( \sigma ^ { 1 } ( x ) ) ) \right] z ( x ) d x =$ ; confidence 0.831
268. ; $x _ { + } = x _ { c } - F ^ { \prime } ( x _ { c } ) ^ { - 1 } F ( x _ { c } ).$ ; confidence 0.831
269. ; $\operatorname { Bel } ( A _ { 1 } \cup \ldots \cup A _ { k } ) \geq$ ; confidence 0.831
270. ; $= \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { z + k },$ ; confidence 0.831
271. ; $\mu : \Sigma \rightarrow X$ ; confidence 0.831
272. ; $K ( M )$ ; confidence 0.831
273. ; $\sum _ { q = 1 } ^ { Q } q f ( q ) \leq c \sum _ { q = 1 } ^ { Q } \varphi ( q ) f ( q )$ ; confidence 0.831
274. ; $\phi _ { j } ( x )$ ; confidence 0.830
275. ; $p _ { ij }$ ; confidence 0.830
276. ; $M ( x ) \in B$ ; confidence 0.830
277. ; $A _ { M } ( s )$ ; confidence 0.830
278. ; $T _ { \iota 0 }$ ; confidence 0.830
279. ; $u _ { i } ^ { n + 1 } = u _ { i } ^ { n } + \frac { \Delta t ^ { n } } { \Delta x } [ f _ { i - 1 / 2 } - f _ { i + 1 / 2 } ].$ ; confidence 0.830
280. ; $f \in B _ { n }$ ; confidence 0.830
281. ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } [ \operatorname { log } \operatorname { sin } \left( \frac { \pi } { l } \left( z - \frac { i b } { 2 } \right) \right) +$ ; confidence 0.830
282. ; $\sum _ { k = 1 } ^ { \infty } x _ { \pi ( k )}$ ; confidence 0.830
283. ; $[ n ] : = \{ 1 , \dots , n \}$ ; confidence 0.830
284. ;$\hat{A}$ ; confidence 0.830
285. ; $K _ { \infty } = \operatorname{SO} ( 2 ) \times Z ( \mathbf{R} ) ^ { 0 }$ ; confidence 0.830
286. ; $h = ( h _ { 1 } , \dots , h _ { n } )$ ; confidence 0.830
287. ; $x \in \mathbf{R} ^ { N }$ ; confidence 0.830 } 288. ; $f \in L ^ { 1 } ( \mathcal{T} ^ { n } )$ ; confidence 0.830
289. ; $\frac { r ( z ^ { - 1 } ) } { z } - \frac { p ( z ) } { q ( z ) } = w _ { 0 } z ^ { 2 n } + w _ { 1 } z ^ { 2 n + 1 } +\dots ,$ ; confidence 0.830
290. ; $\nu : N \rightarrow Q$ ; confidence 0.830
291. ; $f ( z ) = \langle f , K _ { z } \rangle$ ; confidence 0.830
292. ; $X \cong S ^ { m }$ ; confidence 0.830
293. ; $\mathbf{A}^{ - }$ ; confidence 0.829
294. ; $k > 3$ ; confidence 0.829
295. ; $\tilde{T}$ ; confidence 0.829
296. ; $x ^ { ( n ) } + p _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + p _ { n } ( t ) x = 0$ ; confidence 0.829
297. ; $M ^ { \lambda }$ ; confidence 0.829
298. ; $\geq 3$ ; confidence 0.829
299. ; $\varphi ( a , 0 , i ) = a \text { for } i \geq 3 , \varphi ( a , b , i ) = \varphi ( a , \varphi ( a , b - 1 , i ) , i - 1 ) \text { for } i \geq 1 , b \geq 1.$ ; confidence 0.829
300. ; $V _ { ( 2 ) } ^ { 1 } \approx V \otimes S ^ { 2 } V ^ { * }$ ; confidence 0.829
Maximilian Janisch/latexlist/latex/NoNroff/38. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/38&oldid=45321