User:Maximilian Janisch/latexlist/latex/NoNroff/11
List
1.
; $H = \{ \sigma \in \operatorname { Aut } \Gamma : v ^ { \sigma } = v \}$ ; confidence 0.477
2.
; $P \{ \chi _ { k - 1 } ^ { 2 } \geq \chi _ { k - 1 } ^ { 2 } ( \alpha ) \} = \alpha$ ; confidence 0.655
3.
; $( C ) \int _ { X } f d m = \sum _ { i = 1 } ^ { n } ( a _ { i } - a _ { i - 1 } ) m ( B _ { i } )$ ; confidence 0.349
4.
; $\forall 1 \leq i \leq r \exists 1 \leq j \leq r : A _ { i } ^ { T } = A _ { j }$ ; confidence 0.933
5.
; $[ ( t ( n ) ) ^ { Q ( 1 ) } ] = \operatorname { DSPACE } [ ( t ( n ) ) ^ { Q ( 1 ) } ]$ ; confidence 0.490
6.
; $S ^ { 2 } \varepsilon \otimes S ^ { 2 } E \subset \varnothing ^ { 4 } E$ ; confidence 0.068
7.
; $A = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.641
8.
; $\theta _ { \tau _ { N } } = \theta + h \tau _ { \overline { N } } ^ { - 1 / 2 }$ ; confidence 0.103
9.
; $( L _ { h k } V ) _ { j } ^ { n + 1 } \leq 0,1 \leq j \leq J - 1,0 \leq n \leq N - 1$ ; confidence 0.559
10.
; $\frac { d } { d t } U _ { k } = F _ { k } ( t , U _ { k } ) , 0 < t , U _ { k } ( 0 ) = u ^ { 0 } h$ ; confidence 0.179
11.
; $F _ { \nu } + R _ { \nu } - m _ { \nu } w _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.706
12.
; $V _ { n , p } ( f , x ) = \frac { 1 } { p + 1 } \sum _ { k = n - p } ^ { n } S _ { k } ( f , x )$ ; confidence 0.847
13.
; $E ( a , R ) = \{ x \in B : \frac { | 1 - ( x , a ) | ^ { 2 } } { 1 - \| x \| ^ { 2 } } < R \}$ ; confidence 0.363
14.
; $T _ { N } ( x ) = \operatorname { cos } ( n \operatorname { arccos } x )$ ; confidence 0.863
15.
; $\lambda _ { k } \geq \frac { 4 \pi k } { A } \text { for } k = 1,2 , \ldots$ ; confidence 0.567
16.
; $L y \equiv y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0$ ; confidence 0.815
17.
; $\sum _ { q = 1 } ^ { Q } q f ( q ) \leq c \sum _ { q = 1 } ^ { Q } \varphi ( q ) f ( q )$ ; confidence 0.831
18.
; $v ( M _ { 1 } , M _ { 2 } ) = v ( M _ { 1 } ) v ( M _ { 2 } ) , M _ { 1 } , M _ { 2 } \in \Gamma$ ; confidence 0.993
19.
; $\int _ { 0 } ^ { 1 } \nu ( x + ( y - x ) t ) t ^ { - \alpha } ( 1 - t ) ^ { - \beta } d t$ ; confidence 0.994
20.
; $= \int _ { M } \sigma ^ { k + 1 } ^ { * } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ]$ ; confidence 0.342
21.
; $\Lambda _ { m } ^ { \alpha , \beta , r , s } \sim \operatorname { log }$ ; confidence 0.374
22.
; $u ( x ) = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * \tau _ { n } ( x )$ ; confidence 0.292
23.
; $[ D _ { 1 } , D _ { 2 } ] = D _ { 1 } D _ { 2 } - ( - 1 ) ^ { k _ { 1 } k _ { 2 } } D _ { 2 } D _ { 1 }$ ; confidence 0.990
24.
; $L : \Omega ( M , T M ) \rightarrow \operatorname { Der } \Omega ( M )$ ; confidence 0.909
25.
; $( f , \phi ) ^ { \leftarrow } | _ { \sigma } : \tau \leftarrow \sigma$ ; confidence 0.946
26.
; $( \partial _ { t } - \sum _ { j = 1 } ^ { n } \partial _ { x _ { j } } ^ { 2 } ) u = 0$ ; confidence 0.733
27.
; $( x ^ { 0 } , \xi ^ { 0 } ) \in \Omega \times ( R ^ { n } \backslash \{ 0 \} )$ ; confidence 0.761
28.
; $\psi = \psi _ { 0 } + f ( y ) e ^ { i \langle \langle k , x \rangle + \mu t }$ ; confidence 0.281
29.
; $\varphi ( n ) = n - \frac { n } { p _ { 1 } } - \ldots - \frac { n } { p _ { k } } +$ ; confidence 0.757
30.
; $\operatorname { dim } ( P ) \leq \operatorname { max } \{ 2 , | A | \}$ ; confidence 1.000
31.
; $\int _ { s } ^ { \infty } ( 1 + | x | ) | R _ { - } ^ { \prime } ( x ) | d x < \infty$ ; confidence 0.367
32.
; $\int _ { s } ^ { \infty } | R _ { + } ^ { \prime } ( x ) | ( 1 + | x | ) d x < \infty$ ; confidence 0.595
33.
; $U _ { \tau } ^ { * } = \operatorname { sup } _ { 0 } \leq t < \tau | U _ { t } |$ ; confidence 0.902
34.
; $P _ { K } ( v , z ) = \frac { P _ { K } ( v , z ) - 1 } { ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } }$ ; confidence 0.722
35.
; $\rightarrow \omega ( 1 - | F ( z ) | ) / ( 1 - | z | ) = d ( \omega ) < \infty$ ; confidence 0.872
36.
; $\left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right)$ ; confidence 0.953
37.
; $| F | = \left( \begin{array} { l } { x } \\ { k } \end{array} \right)$ ; confidence 0.649
38.
; $M ^ { \perp } = \{ x \in G : | x | \wedge | m | = \text { efor all } m \in M \}$ ; confidence 0.389
39.
; $\lambda x \cdot f ( x ) = \{ ( b , \beta ) : b \in f ( \beta ) \} \in D _ { A }$ ; confidence 0.561
40.
; $y ( \lambda z z ) \equiv y ( \lambda x x ) \not \equiv w ( \lambda x x )$ ; confidence 0.504
41.
; $[ [ \lambda x \cdot M ] ] _ { \rho } = \lambda d [ [ M ] ] _ { \rho ( x : = d ) }$ ; confidence 0.178
42.
; $f ^ { * } \in \text { Homalg } ( H ^ { * } ( Y , F _ { p } ) , H ^ { * } ( X , F _ { p } ) )$ ; confidence 0.183
43.
; $y _ { j } = \sum _ { i = j } ^ { k } p _ { j } \ldots p _ { i - 1 } m _ { i } r ^ { j - i - 1 }$ ; confidence 0.318
44.
; $= L _ { \gamma , n } ^ { c } \int _ { R ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.808
45.
; $( z , \zeta ) = z _ { 1 } + z _ { 2 } \zeta _ { 2 } + \ldots + z _ { n } \zeta _ { n }$ ; confidence 0.975
46.
; $J _ { x - \phi } ( 2 \sqrt { x } ) = x ^ { - ( x + b ) / 2 } G _ { 02 } ^ { 10 } ( x | a , b )$ ; confidence 0.166
47.
; $\mu ^ { \prime } ( d x ) = \operatorname { exp } ( \alpha , x ) \mu ( d x )$ ; confidence 0.578
48.
; $\frac { \partial u } { \partial n } = 0 \text { in } \partial \Omega$ ; confidence 0.933
49.
; $H _ { p } ^ { r } ( \Omega ) = H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( \Omega )$ ; confidence 0.325
50.
; $U = \sqrt { g L \alpha \delta \theta _ { 0 } } , \quad t = \frac { U } { L }$ ; confidence 0.960
51.
; $r : = | x | \rightarrow \infty , \alpha ^ { \prime } : = \frac { x } { r }$ ; confidence 0.682
52.
; $\operatorname { lim } _ { x \rightarrow \infty } \epsilon ( n ) = 0$ ; confidence 0.982
53.
; $\int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } =$ ; confidence 0.373
54.
; $F ( x ) = \frac { x ^ { - \alpha } ( 1 + x ) ^ { 2 \alpha - c } } { \Gamma ( c ) } x$ ; confidence 0.092
55.
; $\operatorname { lim } _ { x \rightarrow \infty } M ( u _ { x } ) = M ( u )$ ; confidence 0.314
56.
; $\mathfrak { M } = < M , D ; \& ^ { * } , V ^ { * } , \supset ^ { * } , \neg ^ { * } >$ ; confidence 0.538
57.
; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$ ; confidence 0.996
58.
; $K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E$ ; confidence 0.981
59.
; $Q _ { n } ( z ) / T _ { n } ( z ) \rightrightarrows 2 / \phi ^ { \prime } ( z )$ ; confidence 0.210
60.
; $f _ { S } = 1 - \frac { 3 \sum _ { i = 1 } ^ { n } | R _ { i } - S _ { i } | } { n ^ { 2 } - 1 }$ ; confidence 0.905
61.
; $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$ ; confidence 0.710
62.
; $\frac { | \nabla ( A ) | } { | N _ { k } + 1 | } \geq \frac { | A | } { | N _ { k } | }$ ; confidence 0.614
63.
; $\left( \begin{array} { l } { [ n ] } \\ { n / 2 } \end{array} \right)$ ; confidence 0.691
64.
; $X A X ^ { \prime } \sim L _ { 1 } ^ { ( 1 ) } ( f _ { 1 } , \frac { \dot { k } } { 2 } )$ ; confidence 0.384
65.
; $\Phi _ { n + 1 } ( z ) = z \Phi _ { n } ( z ) + \rho _ { n + 1 } \Phi _ { n } ^ { * } ( z )$ ; confidence 0.591
66.
; $j g ( z ) = \frac { 1 } { q } + \alpha _ { 1 } ( g ) q + \alpha _ { 2 } ( g ) q ^ { 2 } +$ ; confidence 0.542
67.
; $Y ( T _ { A } ) = \{ N _ { E } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \}$ ; confidence 0.377
68.
; $T ( T _ { A } ) = \{ M _ { A } : \operatorname { Ext } _ { A } ^ { 1 } ( T , M ) = 0 \}$ ; confidence 0.896
69.
; $Y ( T _ { A } ) = \{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \}$ ; confidence 0.638
70.
; $\operatorname { lim } _ { t \rightarrow 0 } - \phi ( e ^ { i t } \zeta )$ ; confidence 0.606
71.
; $\operatorname { dist } _ { \lambda } ( \phi , \phi _ { \lambda } ) = 0$ ; confidence 0.965
72.
; $\hat { f } ( y ) = \int _ { - \infty } ^ { \infty } f ( x ) e ^ { - 2 \pi i x y } d x$ ; confidence 0.724
73.
; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
74.
; $\psi ( a ( z ) ( \frac { d } { d z } ) ^ { n } , b ( z ) ( \frac { d } { d z } ) ^ { m } ) =$ ; confidence 0.324
75.
; $f ( A ) = ( 2 \pi ) ^ { - k } \int _ { R ^ { k } } ^ { i \xi A } \hat { f } ( \xi ) d \xi$ ; confidence 0.458
76.
; $( \overline { \partial } + \mu \partial + \overline { A } ) \psi = 0$ ; confidence 0.960
77.
; $\frac { \partial F } { \partial \alpha _ { j } } = \oint _ { B _ { j } } d S$ ; confidence 0.661
78.
; $R _ { g } ( \lambda ) = \prod _ { i = 0 } ^ { 2 g } ( \lambda - \lambda _ { i } )$ ; confidence 0.460
79.
; $\mathfrak { D } = \operatorname { Hom } _ { R } ( \Omega _ { k } ( R ) , R )$ ; confidence 0.941
80.
; $H _ { n } ( r , \theta ) = r ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.981
81.
; $y _ { i j k } = \mu + \alpha _ { i } + \beta _ { j } + \gamma _ { i j } + e _ { j k }$ ; confidence 0.384
82.
; $E ( x , y ) \nmid _ { D } E ( y , x ) , \quad E ( x , y ) , E ( y , z ) | _ { D } E ( x , z )$ ; confidence 0.078
83.
; $| A ( t ) ( \lambda - A ( t ) ) ^ { - 1 } ( A ( t ) ^ { - 1 } - A ( s ) ^ { - 1 } ) \| \leq$ ; confidence 0.979
84.
; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \cap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199
85.
; $- A ( s ) ( \lambda - A ( s ) ) ^ { - 1 } \frac { d A ( s ) ^ { - 1 } } { d s } \| \leq$ ; confidence 0.992
86.
; $\operatorname { lim } _ { t \rightarrow + \infty } \Omega ( t ) = 0$ ; confidence 0.993
87.
; $R = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) \Pi ( \alpha ) d \alpha$ ; confidence 0.819
88.
; $\int _ { \partial D } f z _ { 1 } ^ { m } d z _ { 1 } = 0 , \quad m = 0,1 , \dots$ ; confidence 0.651
89.
; $a _ { m p } r \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ ; confidence 0.187
90.
; $\pi ( a ) M ^ { U } ( [ t , \infty ) ) \subseteq M ^ { U } ( [ t + s , \infty ) )$ ; confidence 0.631
91.
; $\{ e ^ { 2 \pi i m b x } g ( x - n a ) : n , m \in Z \} = \{ g _ { x } , m : n , m \in Z \}$ ; confidence 0.130
92.
; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809
93.
; $g ( z ) = z e ^ { \int _ { 0 } ^ { z } \frac { p _ { 0 } ( t ) - 1 } { t } d t } _ { \in S }$ ; confidence 0.215
94.
; $r _ { D } : H _ { M } ^ { i } ( X , Q ( j ) ) \rightarrow H _ { H } ^ { i } ( X , Q ( j ) )$ ; confidence 0.860
95.
; $x _ { 3 } ^ { \prime } = p _ { 2 } q _ { 1 } , x _ { 4 } ^ { \prime } = p _ { 2 } q _ { 2 }$ ; confidence 0.985
96.
; $x _ { 1 } ^ { \prime } = p _ { 1 } q _ { 1 } , x _ { 2 } ^ { \prime } = p _ { 1 } q _ { 2 }$ ; confidence 0.711
97.
; $f _ { k } ( x ) = h ^ { - 1 } \int _ { R } \varphi ( \frac { t } { h } ) f ( x - t ) d t$ ; confidence 0.194
98.
; $\partial _ { t } \eta ( u ) + \operatorname { div } _ { X } G ( u ) \leq 0$ ; confidence 0.627
99.
; $\mathfrak { h } = \mathfrak { h } _ { R } \oplus \mathfrak { h } _ { R }$ ; confidence 0.430
100.
; $\| u - q _ { l } \| _ { p , \Omega } \leq C \rho ^ { 2 } | u | _ { p , 2 , \Omega }$ ; confidence 0.133
101.
; $[ T ( n ) , \Sigma ^ { \infty } Z ] \rightarrow \overline { H } _ { n } Z$ ; confidence 0.961
102.
; $x _ { + } = x _ { c } - ( \nabla ^ { 2 } f ( x _ { c } ) ) ^ { - 1 } \nabla f ( x _ { c } )$ ; confidence 0.698
103.
; $I ( M ) = 1 _ { A } ( M / \mathfrak { q } M ) - e _ { \mathfrak { q } } ^ { 0 } ( M )$ ; confidence 0.217
104.
; $\mu ( x ) = m ( x ^ { \prime } ) \times \lambda ( x ^ { \prime \prime } )$ ; confidence 0.832
105.
; $\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t$ ; confidence 0.962
106.
; $g ^ { - 1 } \{ p , q \} : \otimes ^ { Y + 2 } E \rightarrow \otimes ^ { r } E$ ; confidence 0.461
107.
; $L ( \theta ) = N ( 0 , \Gamma ^ { - 1 } ( \theta ) ^ { * } L _ { 2 } ( \theta ) )$ ; confidence 0.959
108.
; $L ( T _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \Gamma h , \Gamma )$ ; confidence 0.970
109.
; $D _ { N } ( x , 1 ) = u ^ { n } + u ^ { - n } = e ^ { i n \alpha } + e ^ { - i n \alpha } =$ ; confidence 0.751
110.
; $\Delta = \sum _ { i = 1 } ^ { n } \partial ^ { 2 } / \partial x _ { i } ^ { 2 }$ ; confidence 0.967
111.
; $\varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H _ { 0 } ^ { 1 } ( \Omega )$ ; confidence 0.746
112.
; $D _ { \epsilon } = \{ z : z \in D , \rho ( z , \partial D ) > \epsilon \}$ ; confidence 0.993
113.
; $f ( \lambda ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } \lambda ^ { n }$ ; confidence 0.489
114.
; $F _ { \mu \nu } = g _ { \mu \alpha } g _ { \nu \beta } F ^ { \alpha \beta }$ ; confidence 0.948
115.
; $\nabla A + \frac { 1 } { c } \frac { \partial \phi } { \partial t } = 0$ ; confidence 0.858
116.
; $H _ { \epsilon } ( C ) = \operatorname { inf } H _ { \epsilon } ( C , X )$ ; confidence 0.964
117.
; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
118.
; $\operatorname { Re } ( E ) \nabla ^ { 2 } E = \nabla E \cdot \nabla E$ ; confidence 0.699
119.
; $f ^ { c \langle \varphi \rangle } : W \rightarrow \overline { R }$ ; confidence 0.548
120.
; $\sum _ { n = 1 } ^ { \infty } N _ { p } ( k _ { n } ) N _ { p } , ( l _ { n } ) < \infty$ ; confidence 0.528
121.
; $\| f \| = \operatorname { sup } \{ \| \pi ( f ) \| : \pi \in \Sigma \}$ ; confidence 0.994
122.
; $B ( G ) = \{ u \in C ^ { G } : u v \in A ( G ) \text { for everyv } \in A ( G ) \}$ ; confidence 0.930
123.
; $e _ { 1 } , \dots , e _ { x } , - ( a _ { 0 } e _ { 1 } + \ldots + a _ { x } - 1 e _ { x } )$ ; confidence 0.231
124.
; $[ P + A , P + A ] ^ { \wedge } = 2 [ P , A ] ^ { \wedge } + [ A , A ] ^ { \wedge } = 0$ ; confidence 0.998
125.
; $\Omega ( M ) = \oplus _ { k } \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.760
126.
; $\operatorname { lim } _ { r \rightarrow 0 } \mu ( B ( x , r ) ) / r ^ { m }$ ; confidence 0.791
127.
; $H ^ { m } ( E \backslash \cup _ { i = 1 } ^ { \infty } f _ { i } ( R ^ { m } ) ) = 0$ ; confidence 0.889
128.
; $D \beta D = \coprod _ { \beta ^ { \prime } \in A } D \beta ^ { \prime }$ ; confidence 0.928
129.
; $\| f ( x + y ) - f ( x ) - f ( y ) \| \leq \theta ( \| x \| ^ { p } + \| y \| ^ { p } )$ ; confidence 0.911
130.
; $\operatorname { log } \alpha _ { n } = o ( \operatorname { log } n )$ ; confidence 0.345
131.
; $f ( x , k ) = e ^ { i k x } + \int _ { y } ^ { \infty } A _ { + } ( x , y ) e ^ { i k y } d y$ ; confidence 0.654
132.
; $S _ { + } ^ { 2 } : = \{ \alpha : \alpha \in S ^ { 2 } , \alpha , e _ { 3 } > 0 \}$ ; confidence 0.530
133.
; $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , k _ { 0 } )$ ; confidence 0.994
134.
; $( a ^ { 2 } \alpha ^ { - 1 } : b ^ { 2 } \beta ^ { - 1 } : c ^ { 2 } \gamma ^ { - 1 } )$ ; confidence 0.558
135.
; $g ( R ( X , Y ) Z , W ) = g ( R ( Z , W ) X , Y ) , R ( X , Y ) Z + R ( Y , Z ) X + R ( Z , X ) Y = 0$ ; confidence 0.977
136.
; $| \nabla u ( z ) | ^ { 2 } \operatorname { log } \frac { 1 } { | z | } d x d y$ ; confidence 0.996
137.
; $\sum _ { j = 1 } ^ { t } \mu _ { * } ^ { - 1 } B _ { j } + \sum _ { k = 1 } ^ { s } D _ { k }$ ; confidence 0.646
138.
; $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$ ; confidence 0.569
139.
; $w _ { i } ( x _ { 1 } , \ldots , x _ { N } ) = e \text { for everyw } _ { i } \in X$ ; confidence 0.257
140.
; $\partial _ { t } ^ { ( k ) } u ( x , t ) = ( - a ) ^ { k } \partial _ { x } ^ { ( k ) }$ ; confidence 0.463
141.
; $- X _ { 0 } ^ { 2 } + \sum X _ { t } ^ { 2 } = 1 = - Y _ { 0 } ^ { 2 } + \sum Y _ { t } ^ { 2 }$ ; confidence 0.968
142.
; $\operatorname { cos } \phi = | - X _ { 0 } Y _ { 0 } + \sum X _ { t } Y _ { t } |$ ; confidence 0.966
143.
; $Q = \langle a _ { 1 } , \dots , a _ { g } | S _ { 1 } , \dots , S _ { n } \rangle$ ; confidence 0.280
144.
; $P = \langle x _ { 1 } , \dots , x _ { 8 } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.372
145.
; $P = \langle x _ { 1 } , \dots , x _ { n } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.292
146.
; $X _ { 1 } \sim E _ { Y , n } ( M _ { 1 } , \Sigma _ { 11 } \otimes \Phi , \psi )$ ; confidence 0.490
147.
; $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$ ; confidence 0.981
148.
; $\{ J ( x ) , X \rangle = j ( X ) ( x ) , H _ { j } ( X ) = \alpha ^ { \prime } ( X )$ ; confidence 0.215
149.
; $\operatorname { inf } _ { x \in H } ( f ( x ) + ( 2 T ) ^ { - 1 } \| x \| ^ { 2 } )$ ; confidence 0.868
150.
; $( \rho _ { \varepsilon } ) _ { \varepsilon > 0 } \subset D ( R ^ { x } )$ ; confidence 0.338
151.
; $x _ { i } = \xi _ { i } ( y _ { i } , \ldots , y _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.393
152.
; $X ^ { * } Y = \mu X Y + \nu Y X + \frac { 1 } { 6 } \operatorname { Tr } ( X Y )$ ; confidence 0.986
153.
; $\sum _ { n = 0 } ^ { \infty } \| \lambda \theta ^ { n } \| ^ { 2 } < \infty$ ; confidence 0.996
154.
; $P ( z ) = m _ { z } ( P ) = \int _ { K } P ( \zeta ) d \mu _ { z } ( \zeta ) , P \in P$ ; confidence 0.996
155.
; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$ ; confidence 0.982
156.
; $s _ { \lambda } = \operatorname { det } ( h _ { \lambda _ { i } - i + j } )$ ; confidence 0.527
157.
; $A \in \mathfrak { L } ( \mathfrak { H } _ { 1 } , \mathfrak { H } _ { 2 } )$ ; confidence 0.767
158.
; $Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } n ( Y _ { s } ) d l _ { s } , t \geq 0$ ; confidence 0.571
159.
; $\lambda = ( \lambda _ { 1 } \geq \lambda _ { 2 } \geq \ldots \geq 0 )$ ; confidence 0.956
160.
; $\pi ^ { * } E ( \lambda , D _ { Y } ) \subset E ( \mu ( \lambda ) , D _ { Z } )$ ; confidence 0.981
161.
; $( x _ { 3 } , u _ { 1 } \cup u _ { 2 } \cup \sigma ) \equiv ( x _ { 3 } , u _ { 3 } )$ ; confidence 0.967
162.
; $\Omega = \sum _ { r = 1 } ^ { R } ( \alpha _ { r } ^ { 2 } - \beta _ { r } ^ { 2 } )$ ; confidence 0.913
163.
; $0 \rightarrow Y \rightarrow X \rightarrow X / Y \rightarrow 0$ ; confidence 0.974
164.
; $\zeta = \xi + i \eta = \Phi ( z ) = \int ^ { z } \sqrt { \varphi ( z ) } d z$ ; confidence 0.975
165.
; $F ( x , y ) \in O _ { S } ^ { * } \text { in } ( x , y ) \in O _ { S } \times O _ { S }$ ; confidence 0.777
166.
; $\frac { \partial M } { \partial y _ { n } } = - M ( \Lambda ^ { t } ) ^ { n }$ ; confidence 0.562
167.
; $( W _ { k } f ) ( t ) = \int _ { 0 } ^ { \infty } k ( t - s ) f ( s ) d s , t \in R _ { + }$ ; confidence 0.913
168.
; $U h ( x ) = h ( T x ) \quad \text { or } \quad U _ { t } h ( x ) = h ( T _ { t } ( x ) )$ ; confidence 0.921
169.
; $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ ; confidence 0.941
170.
; $\mathfrak { b } ^ { + } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.723
171.
; $\alpha ^ { w } = \int _ { R ^ { 2 n } } \alpha ( X ) 2 ^ { n } \sigma _ { X } d X =$ ; confidence 0.285
172.
; $\int _ { B _ { j } } d \Omega _ { n } = V _ { i n } \sim ( \vec { V _ { n } } ) _ { i }$ ; confidence 0.454
173.
; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
174.
; $\rho ( v ) = v ^ { \{ 1 \} } \otimes _ { V } v ^ { ( 2 ) } \in V \otimes _ { k } A$ ; confidence 0.135
175.
; $R : X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.852
176.
; $\Delta G _ { n } ( x ) \equiv \mu _ { n } ( x ) = \sum 1 _ { \{ f _ { i n } = x \} }$ ; confidence 0.751
177.
; $H ( r , \theta ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , \theta )$ ; confidence 0.997
178.
; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
179.
; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
180.
; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
181.
; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
182.
; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837
183.
; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877
184.
; $x _ { 1 } , \ldots , \alpha _ { k } , \beta _ { 1 } , \ldots , \beta _ { k }$ ; confidence 0.767
185.
; $f _ { \alpha } : S ^ { n _ { \alpha } } \rightarrow X _ { n _ { \alpha } }$ ; confidence 0.182
186.
; $y ^ { \prime } = f ( t , y ) , y ( t _ { 0 } ) = y _ { 0 } , t \in [ t _ { 0 } , t _ { e } ]$ ; confidence 0.741
187.
; $= \frac { 1 - ( 1 - \theta ) ^ { n } } { \theta } \text { for } \theta > 0$ ; confidence 0.893
188.
; $M ( \mu ) = U ( \mathfrak { g } ) \otimes U ( \mathfrak { h } ) C ( \mu )$ ; confidence 0.400
189.
; $\| f \| _ { \infty } : = \operatorname { sup } \{ | f ( x ) | : x \in X \}$ ; confidence 0.847
190.
; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M ^ { \vee } , 1 - s )$ ; confidence 0.942
191.
; $L ( i , m ) = \operatorname { det } _ { Q } H _ { B } ^ { i } ( X / R , R ( i - m ) )$ ; confidence 0.358
192.
; $r _ { l } - 2 ( z ) = q _ { l } ( z ) r _ { l } - 1 ( z ) + r _ { l } ( z ) , \quad i = 1,2 ,$ ; confidence 0.399
193.
; $d _ { n } ^ { * } \in \cap _ { \subsetneq \in P } L _ { 2 } ( \Omega , A , P )$ ; confidence 0.060
194.
; $f ( t ) = \sum _ { n = - \infty } ^ { \infty } a _ { n } e ^ { i n t } , a _ { 0 } = 0$ ; confidence 0.914
195.
; $D _ { \xi } = ( 1 , \xi _ { 1 } , \dots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) R _ { + }$ ; confidence 0.503
196.
; $\frac { 1 } { 3 e ^ { 1 / 3 } } < K _ { n } ( D ^ { \circ } ) \leq \frac { 1 } { 3 }$ ; confidence 0.967
197.
; $\partial _ { q , x } ( x ^ { n } y ^ { m } ) = [ n ] _ { q ^ { 2 } } x ^ { n - 1 } y ^ { m }$ ; confidence 0.906
198.
; $U _ { q } ( g ) = U _ { q } ( n _ { - } ) \times H _ { \bowtie } U _ { q } ( n _ { + } )$ ; confidence 0.195
199.
; $| u | _ { p , m , T } = \sum _ { | \alpha | = m } \| D ^ { \alpha } u \| _ { p , T }$ ; confidence 0.332
200.
; $R H = ( \oplus _ { b } G _ { = B } b ) \oplus ( \oplus _ { b } G _ { \neq B } b )$ ; confidence 0.330
201.
; $s = x _ { + } - x _ { c } , \quad y = \nabla f ( x _ { + } ) - \nabla f ( x _ { c } )$ ; confidence 0.865
202.
; $\pi ( \zeta ) = \mu ( \frac { 1 } { ( 1 + \langle , \zeta \rangle ) } )$ ; confidence 0.587
203.
; $2 \kappa \Delta c - f _ { 0 } ^ { \prime } ( c ) = \lambda \text { in } V$ ; confidence 0.821
204.
; $\zeta ( s , a ) : = \sum _ { k = 0 } ^ { \infty } \frac { 1 } { ( k + a ) ^ { s } }$ ; confidence 0.413
205.
; $\operatorname { lim } _ { L } \leftarrow : A ^ { C } \rightarrow A$ ; confidence 0.181
206.
; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.512
207.
; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.682
208.
; $p ( x ) = \frac { 1 } { 2 ^ { x / 2 } \Gamma ( n / 2 ) } e ^ { - x / 2 } x ^ { n / 2 - 1 }$ ; confidence 0.732
209.
; $A \rightarrow \overline { A } = \operatorname { sp } ( A ) \cap S$ ; confidence 0.324
210.
; $\tilde { M } \subset R ^ { n } \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.294
211.
; $\langle \tilde { \gamma } ( X ) , Y \rangle = g ( X \otimes Y ) \in R$ ; confidence 0.871
212.
; $\| f \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { \infty }$ ; confidence 0.927
213.
; $c ^ { T } x + \overline { u } ^ { T } ( A _ { 1 } x - b _ { 1 } ) < \overline { q }$ ; confidence 0.232
214.
; $y ( x _ { i } ) = c _ { i } , \quad i = 1 , \dots , n ; \quad x _ { i } \in [ a , b ]$ ; confidence 0.614
215.
; $D _ { n } ( x , a ) = x D _ { n - 1 } ( x , a ) - a D _ { n - 2 } ( x , a ) , \quad n \geq 2$ ; confidence 0.375
216.
; $Dom ( - \Delta Dir ) = H _ { 0 } ^ { 1 } ( \Omega ) \cap H ^ { 2 } ( \Omega )$ ; confidence 0.261
217.
; $0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq$ ; confidence 0.992
218.
; $d ( z , w ) = \alpha ( z ) \alpha ^ { * } ( w ) - \beta ( z ) \beta ^ { * } ( w )$ ; confidence 0.996
219.
; $H ^ { \bullet } ( \partial ( \Gamma \backslash X ) , \tilde { M } )$ ; confidence 0.653
220.
; $( \varphi \rightarrow ( \neg \varphi \rightarrow \psi ) ) = 1$ ; confidence 0.997
221.
; $\epsilon _ { l } \in H ^ { 1 } ( X _ { 0 } ( N ) \times X _ { 0 } ( N ) ; K _ { 2 } )$ ; confidence 0.965
222.
; $\# A / ( \sqrt { q \operatorname { log } q } ) \rightarrow \infty$ ; confidence 0.775
223.
; $\sigma ( L _ { C } ^ { \infty } ( \hat { G } ) , L _ { C } ^ { 1 } ( \hat { G } ) )$ ; confidence 0.508
224.
; $\lambda _ { G } ^ { p } ( \mu ) = ( \operatorname { supp } \mu ) ^ { - 1 }$ ; confidence 0.182
225.
; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
226.
; $\Omega ^ { k } ( M ; T M ) = \Gamma ( \wedge ^ { k } T ^ { * } M \otimes T M )$ ; confidence 0.897
227.
; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ) )$ ; confidence 0.578
228.
; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ \alpha ( x ) : f ( x ) = y \}$ ; confidence 0.188
229.
; $( \alpha _ { 1 } \cup \gamma , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.635
230.
; $u ( x ; 0 ) = \Phi ( x ) , u _ { m } ( y ; t ) = 0 \text { for } y \in C _ { N } , t > 0$ ; confidence 0.706
231.
; $T _ { n } f ( z ) = \sum _ { m = 0 } ^ { \infty } \gamma _ { n } ( m ) q ^ { m } ( z )$ ; confidence 0.751
232.
; $\tilde { D } = \{ \alpha \in G : \alpha D \alpha ^ { - 1 } \text { is }$ ; confidence 0.629
233.
; $\overline { d } _ { \lambda } ( A ) \leq \overline { d } _ { \mu } ( A )$ ; confidence 0.705
234.
; $\Delta ^ { 2 } \alpha _ { k } = \Delta ( \Delta \alpha _ { k } ) \geq 0$ ; confidence 0.464
235.
; $H ( \theta , \theta _ { 0 } ) \sim c \| \theta - \theta _ { 0 } \| ^ { 2 }$ ; confidence 0.912
236.
; $H = - J \sum _ { i = 1 } ^ { N } S _ { i } S _ { + 1 } - H \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.429
237.
; $P = ( P _ { s s ^ { \prime } } ) = ( \langle S | P | S ^ { \prime } \rangle )$ ; confidence 0.497
238.
; $\varepsilon \mapsto ( \varepsilon , \ldots , \varepsilon )$ ; confidence 0.520
239.
; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.948
240.
; $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.981
241.
; $u _ { t } + u _ { X X X X } + u _ { X X } + u u _ { X } = 0 , \quad x \in [ - L / 2 , L / 2 ]$ ; confidence 0.173
242.
; $H _ { l } ^ { i } ( \overline { X } ) = H ^ { i } ( X , Z _ { l } ) \otimes Q _ { l }$ ; confidence 0.585
243.
; $H _ { N } = \cup \{ m \in Z ^ { n } : 2 ^ { s } j \leq | m _ { j } | < 2 ^ { s } j + 1 \}$ ; confidence 0.365
244.
; $L ( x , y ) , D , E \in \operatorname { Inn } \operatorname { Der } A$ ; confidence 0.910
245.
; $\mu : = \operatorname { min } \{ \operatorname { dim } l , n - 1 \}$ ; confidence 0.959
246.
; $\sum _ { i = 1 } ^ { n } [ - \operatorname { ln } f _ { T _ { n } } ( x _ { i } ) ]$ ; confidence 0.986
247.
; $\{ \alpha , \alpha ^ { d } , \ldots , \alpha ^ { d ^ { n } } , \ldots \}$ ; confidence 0.316
248.
; $\operatorname { Ext } ( A , B ) = \operatorname { Hom } ( B , Q ( A ) )$ ; confidence 0.978
249.
; $u | _ { \partial \Omega } \in H _ { 2 } ^ { \rho } ( \partial \Omega )$ ; confidence 0.873
250.
; $\| f _ { m } \| _ { C } 2 , \lambda \leq \mathfrak { c } _ { 0 } = const > 0$ ; confidence 0.061
251.
; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma$ ; confidence 0.971
252.
; $x \in R _ { + } , \psi _ { m } ( 0 , k ) = 1 , \psi _ { m } ^ { \prime } ( 0 , k ) = 0$ ; confidence 0.396
253.
; $( \frac { \partial ^ { 2 } u } { \partial z _ { i } \partial z _ { j } } )$ ; confidence 0.939
254.
; $\int _ { T } d m ( t ) F ( t ) \int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) =$ ; confidence 0.691
255.
; $= ( ( F ( . ) , h ( , x ) ) _ { H } , ( h ( \ldots , y ) , h ( . . , x ) ) _ { H } ) _ { H } =$ ; confidence 0.122
256.
; $R _ { S } ^ { * } = \{ x \in Q : | x | _ { v } = 1 , \forall | l _ { v } \notin S \}$ ; confidence 0.096
257.
; $l _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x \text { or } l _ { d } ( f ) = f$ ; confidence 0.575
258.
; $\chi ( D ) = \sum ( - 1 ) ^ { i } \operatorname { dim } H _ { S } ^ { i } ( D )$ ; confidence 0.914
259.
; $\sum _ { k = 0 } ^ { n ( P ) } \frac { | F \cap N _ { k } | } { | N _ { k } | } \leq 1$ ; confidence 0.350
260.
; $k \oplus \infty ( L ) = \infty ( L ) \oplus k = \infty ( L \oplus k )$ ; confidence 0.315
261.
; $\operatorname { diag } ( \alpha , \alpha ^ { - 1 } , 1,1 , \ldots )$ ; confidence 0.671
262.
; $\Gamma ^ { - } \supset \Gamma ( L ^ { 2 } ( R ) ) \supset \Gamma ^ { + }$ ; confidence 0.986
263.
; $c _ { N } = \int _ { 0 } ^ { \infty } t ^ { x } d \psi ( t ) , n = 0 , \pm 1 , \pm 2$ ; confidence 0.304
264.
; $\varphi _ { 3 } : ( \infty , 0 ) \times S ^ { 1 } \rightarrow \Sigma$ ; confidence 0.996
265.
; $\tilde { \Sigma } = \Sigma \backslash \cup _ { i = 1,2,3 } U _ { i }$ ; confidence 0.818
266.
; $G ( a ) = \operatorname { exp } ( [ \operatorname { log } a ] _ { 0 } )$ ; confidence 0.559
267.
; $\phi _ { N } ( z ) = \frac { \Phi _ { N } ( z ) } { \| \Phi _ { N } \| _ { \mu } }$ ; confidence 0.454
268.
; $\frac { d } { d t } V _ { t } = P + \delta V _ { t } - \mu _ { X } + t ( S - V _ { t } )$ ; confidence 0.833
269.
; $\overline { d ^ { 2 } f } _ { X } : R ^ { n } \times R ^ { n } \rightarrow R$ ; confidence 0.078
270.
; $\vec { d ^ { 2 } f _ { x } } : K _ { x } \times T V _ { x } \rightarrow Q _ { x }$ ; confidence 0.194
271.
; $E ^ { TF } ( N ) > \sum _ { j = 1 } ^ { K } E _ { atom } ^ { TF } ( N _ { j } , Z _ { j } )$ ; confidence 0.450
272.
; $U = \sum _ { 1 \leq i < j \leq K } Z _ { i } Z _ { j } | R _ { i } - R _ { j } | ^ { - 1 }$ ; confidence 0.955
273.
; $= \frac { 1 } { q } + 196884 q + 21493760 q ^ { 2 } + 864299970 q ^ { 3 } +$ ; confidence 0.992
274.
; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , ) : F \rightarrow X$ ; confidence 0.653
275.
; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K l ) \rightarrow Z$ ; confidence 0.497
276.
; $[ \alpha ] = ( \alpha , \alpha ^ { 2 } / 2 , \alpha ^ { 2 } / 3 , \ldots )$ ; confidence 0.800
277.
; $( \xi \eta _ { 1 } | \eta _ { 2 } ) = ( \eta _ { 1 } | \xi ^ { \# } \eta _ { 2 } )$ ; confidence 0.956
278.
; $Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) \sim Y ( Y ( u , x _ { 1 } - x _ { 2 } ) v , x _ { 2 } )$ ; confidence 0.969
279.
; $V _ { i } = \{ x : \forall j \neq i , d ( x , p _ { i } ) \leq d ( x , p _ { j } ) \}$ ; confidence 0.806
280.
; $P _ { \alpha } P _ { \beta } = P _ { \beta } P _ { \alpha } = P _ { \alpha }$ ; confidence 0.998
281.
; $G ^ { \sigma } ( T ) = \operatorname { sup } _ { G ( U ) = 1 } [ T , U ] ^ { 2 }$ ; confidence 0.787
282.
; $h _ { 1 } \otimes \ldots \otimes h _ { \gamma } \in H ^ { \otimes X }$ ; confidence 0.421
283.
; $r _ { 1 } ( t , s ) = \prod _ { i = 1 } ^ { N } ( t _ { i } / s _ { i } - t _ { i } s _ { i } )$ ; confidence 0.382
284.
; $\prod _ { j } H _ { n j } ( \frac { \langle y , f _ { j } \} } { \sqrt { 2 } } )$ ; confidence 0.089
285.
; $\operatorname { lim } _ { t \rightarrow \infty } f ( t ) = \infty$ ; confidence 0.999
286.
; $( F _ { win } f ) ( \omega , t ) = \int f ( s ) g ( s - t ) e ^ { - i \omega s } d s$ ; confidence 0.457
287.
; $\sigma _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ ; confidence 0.937
288.
; $Z ( x ( n + k ) ) = z ^ { k } Z ( x ( n ) ) - \sum _ { r = 0 } ^ { k - 1 } x ( r ) z ^ { k - r }$ ; confidence 0.836
289.
; $Z ( \alpha x ( n ) + \beta y ( n ) ) = \alpha Z ( x ( n ) ) + \beta Z ( y ( n ) )$ ; confidence 0.841
290.
; $0 \leq \sigma \leq ( 1 / n ) \operatorname { tan } ^ { 2 } ( \pi / 2 n )$ ; confidence 1.000
291.
; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
292.
; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
293.
; $\{ z \in A : z \alpha = \alpha z \text { for each } \alpha \in A \}$ ; confidence 0.559
294.
; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { D } T )$ ; confidence 0.973
295.
; $T ( i , 0 ) = 0 \text { for } i \geq 1 , T ( i , 1 ) = 2 \text { for } i \geq 1$ ; confidence 0.980
296.
; $y = \sum _ { i = 1 } ^ { I } ( n _ { i } \sum _ { j = 1 } ^ { J } z _ { i j } p _ { i j } )$ ; confidence 0.425
297.
; $x _ { n + 1 } = u _ { 0 } - \frac { \Delta u _ { 0 } } { \Delta ^ { 2 } u _ { 0 } }$ ; confidence 0.909
298.
; $\operatorname { co } ( R ) = U \times \operatorname { Rng } ( R )$ ; confidence 0.287
299.
; $Alg _ { \operatorname { mod } e l s } ( L ) \subseteq Alg _ { + } ( L )$ ; confidence 0.181
300.
; $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ ; confidence 0.982
Maximilian Janisch/latexlist/latex/NoNroff/11. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/11&oldid=44421