User:Maximilian Janisch/latexlist/latex/NoNroff/10
List
1. ; $s _ { i } ( z ) \alpha ( z ) \equiv r _ { i } ( z ) ( \operatorname { mod } b ( z ) )$ ; confidence 0.512
2. ; $\operatorname { deg } \omega ( z ) < \operatorname { deg } \sigma ( z )$ ; confidence 0.999
3. ; $\frac { 1 } { n } \sum _ { j = 1 } ^ { n } \frac { x _ { j } - 1 + p _ { j } } { 2 p _ { j } - 1 }$ ; confidence 0.508
4. ; $f = ( 1 , \xi _ { 1 } , \ldots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) f _ { 0 } \in D _ { \xi }$ ; confidence 0.600
5. ; $\Psi _ { V , W } ( v \otimes w ) = \sum v ^ { ( I ) } \supset w \otimes v ^ { ( 2 ) }$ ; confidence 0.080
6. ; $\partial _ { q , y } ( x ^ { n } y ^ { m } ) = q ^ { n } [ m ] _ { q ^ { 2 } } x ^ { n } y ^ { m - 1 }$ ; confidence 0.097
7. ; $\| u \| _ { p , m , T } = \sum _ { | \alpha | \leq m } \| D ^ { \alpha } u \| _ { p , T }$ ; confidence 0.645
8. ; $= - \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.747
9. ; $w = \prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.725
10. ; $\operatorname { Ric } \geq - ( n - 1 ) \delta ^ { 2 } , \quad \delta \geq 0$ ; confidence 0.800
11. ; $z \in C \backslash Z _ { 0 } , \quad Z _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \}$ ; confidence 0.448
12. ; $E T _ { p q } - A _ { 0 } T _ { p - 1 , q - 1 } - A _ { 1 } T _ { p , q - 1 } - A _ { 2 } T _ { p - 1 , q } =$ ; confidence 0.921
13. ; $\sum _ { i = 0 } ^ { m } a _ { m - i } [ A _ { 1 } ^ { m - i } , A _ { 1 } ^ { n - i - 1 } A _ { 2 } ] = 0$ ; confidence 0.342
14. ; $\operatorname { det } [ E \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } s ^ { i }$ ; confidence 0.892
15. ; $\int p \overline { q } d \mu = \langle M ( n ) \hat { p } , \hat { q } \rangle$ ; confidence 0.454
16. ; $g = \lambda \mu ( d \rho \otimes d \sigma + d \sigma \otimes d \rho ) / 2$ ; confidence 0.803
17. ; $g ^ { - 1 } \{ p , q ; r , s \} : \otimes ^ { Y + 4 } E \rightarrow \otimes ^ { r } E$ ; confidence 0.312
18. ; $\varphi * : K _ { 0 } ^ { dag } ( c _ { 1 } \otimes C [ \Gamma ] ) \rightarrow C$ ; confidence 0.081
19. ; $\int _ { - \infty } ^ { \infty } x ^ { k } \psi _ { N } ( x ) d x = 0,0 \leq k \leq N$ ; confidence 0.884
20. ; $A ^ { \pm } = \frac { n } { 2 } ( \pm 1 - \operatorname { cos } \theta ) d \phi$ ; confidence 0.999
21. ; $\frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } f ( e ^ { i \theta } ) d \theta = f ( 0 )$ ; confidence 0.998
22. ; $X \underline { \square } _ { N } = \operatorname { inf } _ { t } X _ { n } ( t )$ ; confidence 0.077
23. ; $\tilde { D } = \{ w : w _ { 1 } z _ { 1 } + \ldots + w _ { n } z _ { n } \neq 1 , z \in D \}$ ; confidence 0.229
24. ; $| x - \frac { p } { q } | < f ( q ) , \quad \operatorname { gcd } ( p , q ) = 1 , q > 0$ ; confidence 0.906
25. ; $d ( C _ { i } , C _ { j } ) = \sqrt { \sum _ { k = 1 } ^ { r } ( x _ { j k } - x _ { i k } ) ^ { 2 } }$ ; confidence 0.655
26. ; $\operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E )$ ; confidence 0.574
27. ; $E ^ { k } = \{ [ \sigma ] _ { x } ^ { k } : x \in M , \sigma \in \Gamma _ { x } ( E ) \}$ ; confidence 0.532
28. ; $\mathfrak { c } _ { 1 } , \ldots , \mathfrak { c } _ { \mathfrak { N } } \in C$ ; confidence 0.344
29. ; $T ( \square _ { \alpha } \varphi ) = \square _ { \alpha } ( T ( \varphi ) )$ ; confidence 0.872
30. ; $\hat { \mu } ( x ) = \int _ { G } \overline { \chi ( x ) } d \mu ( \chi ) , x \in G$ ; confidence 0.547
31. ; $L ( s ) = \sum _ { n = 1 } ^ { \infty } c ( n ) n ^ { - s } , \operatorname { Re } s > k$ ; confidence 0.949
32. ; $\{ z = x + i y : x _ { 1 } > \frac { | x ^ { \prime } | + | y | + 1 } { \varepsilon } \}$ ; confidence 0.980
33. ; $\gamma ( T ) = \operatorname { inf } \frac { \| T _ { X } \| } { d ( x , N ( T ) ) }$ ; confidence 0.679
34. ; $\lambda _ { 1 } \geq \ldots \geq \operatorname { Re } \lambda _ { \nu }$ ; confidence 0.701
35. ; $\sigma ( A ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A )$ ; confidence 0.439
36. ; $\Delta _ { \delta } ( \alpha ) : = \{ z \in C : | z - \alpha | \leq \delta \}$ ; confidence 0.926
37. ; $p _ { m } ( x , \xi ) = \sum _ { | \alpha | = m } p _ { \alpha } ( x ) \xi ^ { \alpha }$ ; confidence 0.806
38. ; $d _ { \chi } ^ { G } ( A ) \geq \chi ( \text { id } ) \operatorname { det } ( A )$ ; confidence 0.692
39. ; $( D _ { + } ) = \int _ { M } \hat { A } ( M ) Ch ( E ) - \frac { \eta ( D _ { 0 } ) + h } { 2 }$ ; confidence 0.258
40. ; $f ( k ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } g ( t ) e ^ { i k t } d t )$ ; confidence 0.994
41. ; $R = O [ [ \Gamma ] ] = \text { varprojlim } O [ \Gamma / \Gamma ^ { p ^ { n } } ]$ ; confidence 0.400
42. ; $X _ { \infty } = \operatorname { lim } _ { t \rightarrow \infty } X _ { t }$ ; confidence 0.864
43. ; $Y _ { \infty } = \operatorname { lim } _ { t \rightarrow \infty } Y _ { t }$ ; confidence 0.980
44. ; $\int _ { 1 } | \varphi - \varphi _ { 1 } | ^ { 2 } d \vartheta \leq c ^ { 2 } | I |$ ; confidence 0.203
45. ; $h = \sum _ { \mu , \nu } h _ { \mu \nu } ( z ) d z _ { \mu } \bigotimes d z _ { \nu }$ ; confidence 0.237
46. ; $( \lambda x _ { 1 } ( \lambda x _ { 2 } \ldots ( \lambda x _ { n } M ) \ldots ) )$ ; confidence 0.217
47. ; $D = ( \partial / \partial x _ { 1 } , \dots , \partial / \partial x _ { n } )$ ; confidence 0.240
48. ; $h _ { K } ( u ) : = \operatorname { max } \{ \langle x , u \rangle : x \in K \}$ ; confidence 0.443
49. ; $( \psi [ 1 ] \varphi ) _ { x } = - \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ { x }$ ; confidence 0.905
50. ; $s _ { j } = \sum _ { i = 1 } ^ { M } ( z _ { 1 } ^ { ( 1 ) } ) ^ { j } , \quad j = 1 , \ldots , M$ ; confidence 0.400
51. ; $( \varphi u ) ( \varphi v ) = F ^ { - 1 } ( F ( \varphi u ) ^ { * } F ( \varphi v ) )$ ; confidence 0.950
52. ; $( \partial ^ { 2 } / \partial x ^ { 2 } + \partial ^ { 2 } / \partial y ^ { 2 } )$ ; confidence 0.989
53. ; $A _ { N } ( F f \circ s \circ f ^ { - 1 } ) = ( G f ) \circ A _ { M } ( s ) \circ f ^ { - 1 }$ ; confidence 0.820
54. ; $f = \lambda ^ { p } + \alpha _ { 1 } \lambda ^ { p - 1 } + \ldots + \alpha _ { p }$ ; confidence 0.980
55. ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( \alpha ^ { \prime } , \alpha , k )$ ; confidence 0.985
56. ; $\Delta = ( \mathfrak { H } , \mathfrak { F } , \mathfrak { G } ; T , F , G , H )$ ; confidence 0.787
57. ; $\langle \operatorname { grad } _ { R } f ( x ) , v \rangle _ { R } = D f ( x ) . y$ ; confidence 0.471
58. ; $l ( u ) = \operatorname { sup } \{ t \geq 0 : g + ( u ) \text { is defined } \}$ ; confidence 0.751
59. ; $\overline { U M } = \{ u \in U M : l ( - u ) < \infty \} \cup U ^ { + } \partial M$ ; confidence 0.994
60. ; $\| p _ { \lambda } ^ { ( \alpha - 1 , \beta - 1 ) } \| _ { \mu _ { 0 } } = \circ ( n )$ ; confidence 0.121
61. ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
62. ; $SH ^ { * } ( M , \omega , \phi ) = SH ^ { * } ( N , \tilde { \omega } , L _ { + } , L - )$ ; confidence 0.251
63. ; $\partial \sigma _ { T } ( A , H ) \subseteq \partial \sigma _ { H } ( A , H )$ ; confidence 0.975
64. ; $M \stackrel { f } { \rightarrow } N \stackrel { \pi } { \rightarrow } I$ ; confidence 0.165
65. ; $M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = M _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814
66. ; $\operatorname { lim } _ { t \rightarrow 0 ^ { + } } \phi ( e ^ { i t } \zeta )$ ; confidence 0.968
67. ; $\Omega ( X ; A , B ) = \{ p : [ 0,1 ] \rightarrow X : p ( 0 ) \in A , p ( 1 ) \in B \}$ ; confidence 0.933
68. ; $\operatorname { lim } _ { r \rightarrow \infty } r t ( r + 1 , r ) = \infty$ ; confidence 0.712
69. ; $z \in \{ | z | \geq \rho \} \cup \{ | \operatorname { arc } z | < \kappa \}$ ; confidence 0.903
70. ; $\phi = \sum \phi _ { v } : WC ( A , k ) \rightarrow \sum _ { v } WC ( A , k _ { v } )$ ; confidence 0.221
71. ; $f ( x ) = ( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } e ^ { i x \xi } \hat { f } ( \xi ) d \xi$ ; confidence 0.400
72. ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \in \Lambda ( n , r )$ ; confidence 0.455
73. ; $( M _ { T } u ) ( x ) = | \operatorname { det } T \rceil ^ { - 1 / 2 } u ( T ^ { - 1 } x )$ ; confidence 0.610
74. ; $k ( e ^ { - i \lambda } ) = \sum _ { j = 0 } ^ { \infty } K _ { j } e ^ { - i \lambda j }$ ; confidence 0.993
75. ; $f ( x ) = - \frac { 1 } { \pi } \int _ { 0 } ^ { \infty } \frac { d F _ { x } ( q ) } { q }$ ; confidence 0.948
76. ; $\| f - p \| _ { 2 } = ( \int \int _ { D } | f ( x , y ) - p ( x , y ) | ^ { 2 } d x d y ) ^ { 1 / 2 }$ ; confidence 0.839
77. ; $SS _ { H } = \| \hat { \eta } _ { \Omega } - \hat { \eta } _ { \omega } \| ^ { 2 }$ ; confidence 0.587
78. ; $\wedge \Gamma \approx \Delta \rightarrow \varphi \approx \psi$ ; confidence 0.985
79. ; $| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \|$ ; confidence 0.780
80. ; $b ( t ) = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) p ( \alpha , t ) d \alpha$ ; confidence 0.887
81. ; $\square _ { R } \text { Mod } ( ? , C ) \rightarrow S _ { C } \rightarrow 0$ ; confidence 0.286
82. ; $- [ \alpha _ { 1 } , D _ { 1 } ] = [ D _ { 1 } , \alpha _ { 1 } ] = D _ { 1 } \alpha _ { 1 }$ ; confidence 0.681
83. ; $p _ { i } ^ { * } = p _ { i } - \eta \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle$ ; confidence 0.870
84. ; $+ \sum _ { 1 \leq i < j \leq k } ( - 1 ) ^ { i + j } X \otimes [ X , X _ { j } ] \wedge$ ; confidence 0.236
85. ; $\operatorname { sp } ( J , x ) = \operatorname { sp } ( J ^ { \prime } , x )$ ; confidence 0.846
86. ; $U _ { 1 } \supset V _ { 1 } \supset U _ { 2 } \supset V _ { 2 } \supset \ldots$ ; confidence 0.888
87. ; $1 \leq \| ( \mu I - A ) ^ { - 1 } \cdot E \| \leq \| ( \mu I - A ) ^ { - 1 } \| \| E \|$ ; confidence 0.417
88. ; $E _ { WOr } ( P , m ) = \operatorname { sup } _ { p \in P } | \epsilon ( p , m ) |$ ; confidence 0.341
89. ; $\Lambda ( M , s ) = \Lambda ( h ^ { i } ( X ) , s ) = L _ { \infty } ( M , s ) L ( M , s )$ ; confidence 0.991
90. ; $\sigma ( z ) S ( z ) \equiv \omega ( z ) ( \operatorname { mod } z ^ { 2 t } )$ ; confidence 0.995
91. ; $p = x _ { 1 } + \frac { 1 } { 2 } x _ { 3 } , \quad q = x _ { 2 } + \frac { 1 } { 2 } x _ { 3 }$ ; confidence 0.989
92. ; $\alpha = \operatorname { log } M / \operatorname { log } T \in ( 0,1 )$ ; confidence 0.999
93. ; $[ \mathfrak { g } _ { + } , \mathfrak { g } _ { - } ] \subset \mathfrak { h }$ ; confidence 0.978
94. ; $\Psi ( x ^ { n } \bigotimes x ^ { m } ) = q ^ { n m } x ^ { m } \varnothing x ^ { n }$ ; confidence 0.119
95. ; $f ( u ) = \{ g \in G : g a c t s \text { trivially on } T \backslash T _ { d } \}$ ; confidence 0.155
96. ; $\int _ { 0 } ^ { \infty } ( V _ { g } f ) ( \theta , t ) \frac { d t } { t } = c _ { g } f$ ; confidence 0.536
97. ; $S = \{ r e ^ { i \theta } : 1 - h \leq r < 1 , | \theta - \theta _ { 0 } | \leq h \}$ ; confidence 0.662
98. ; $G : = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k + 1 ) ^ { 2 } } \cong$ ; confidence 0.996
99. ; $\Delta ( A , E ) = \sum _ { i = 0 } ^ { n } \alpha _ { i } , n - i A ^ { i } E ^ { n - i } = 0$ ; confidence 0.510
100. ; $T _ { n } ( x ) = \operatorname { cos } ( n \operatorname { cos } ^ { - 1 } x )$ ; confidence 0.739
101. ; $\tau _ { p + 1 } : \otimes ^ { p + q + 1 } E \rightarrow \otimes ^ { p + q + 1 } E$ ; confidence 0.462
102. ; $- \{ d y ^ { 1 } \otimes d y ^ { 1 } + \ldots + d y ^ { q } \bigotimes d y ^ { q } \}$ ; confidence 0.104
103. ; $\Lambda _ { n } = \operatorname { log } ( d P _ { n } ^ { \prime } / d P _ { n } )$ ; confidence 0.906
104. ; $P ( X _ { k } > t ) = \operatorname { exp } ( - \int _ { 0 } ^ { t } u _ { k } ( s ) d s )$ ; confidence 0.594
105. ; $\int f ( \theta , \phi ) d \phi = \int f ( \theta , \phi , \alpha ) d \phi$ ; confidence 0.998
106. ; $J ^ { 1 } \Gamma : J ^ { 1 } Y \rightarrow J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.974
107. ; $\nabla \times E + \frac { 1 } { c } \frac { \partial B } { \partial t } = 0$ ; confidence 0.905
108. ; $\sigma ^ { k } ( x ) = ( x , y ( x ) , y ^ { \prime } ( x ) , \ldots , y ^ { ( k ) } ( x ) )$ ; confidence 0.424
109. ; $d _ { p } \quad \square ( E / K ) \leq 2 \text { ord } _ { p } [ E ( K ) : Z y _ { K } ]$ ; confidence 0.200
110. ; $U \# , \Omega = U \cap \{ \operatorname { Im } z _ { k } \neq 0 : k \neq j \}$ ; confidence 0.445
111. ; $\chi _ { \sigma } = \prod _ { j = 1 } ^ { n } 1 / ( e ^ { \sigma _ { j } z _ { j } } + 1 )$ ; confidence 0.663
112. ; $( \mathfrak { B } \mathfrak { b } ) \sim _ { l } ( \mathfrak { A } \alpha )$ ; confidence 0.123
113. ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798
114. ; $p ( x , \xi ) = \sum _ { | \alpha | \leq m } p _ { \alpha } ( x ) \xi ^ { \alpha }$ ; confidence 0.593
115. ; $P ( x , D ) = \sum _ { | \alpha | \leq m } p _ { \alpha } ( x ) D _ { x } ^ { \alpha }$ ; confidence 0.857
116. ; $| \Delta P ( i \omega ) | < | R ( i \omega ) | , \quad \text { a.a. } \omega$ ; confidence 0.820
117. ; $( \alpha _ { 1 } \cup \gamma ^ { d } , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.609
118. ; $+ \frac { 4 } { 3 } \pi ^ { - 1 / 2 } \int _ { C _ { N } } \phi _ { ; m } \rho _ { ; m } d y$ ; confidence 0.750
119. ; $D \alpha D = \coprod _ { \alpha ^ { \prime } \in A } D \alpha ^ { \prime }$ ; confidence 0.777
120. ; $\gamma _ { n } ( m ) = \sum _ { d | ( n , m ) } d ^ { k - 1 } c ( \frac { m n } { d ^ { 2 } } )$ ; confidence 0.304
121. ; $s = ( s _ { 1 } , \dots , s _ { n } ) : \partial D \times D \rightarrow C ^ { n }$ ; confidence 0.626
122. ; $e ^ { s } ( T , V ) = e \Rightarrow e ( T , V ) = e \Rightarrow e ^ { w } ( T , V ) = e$ ; confidence 0.332
123. ; $g ( x , k ) = e ^ { - i k x } + \int _ { - \infty } ^ { x } A _ { - } ( x , y ) e ^ { - i k y } d y$ ; confidence 0.833
124. ; $\| F ( x ) \| _ { L } \propto _ { ( R _ { + } ) } + \| F ( x ) \| _ { L ^ { 1 } ( R _ { + } ) } +$ ; confidence 0.088
125. ; $q ( x ) = 2 \frac { d } { d x } [ \Gamma _ { 2 x } ( 2 x , 0 ) - \Gamma _ { 2 x } ( 0,0 ) ]$ ; confidence 0.992
126. ; $\delta \Leftrightarrow F \Leftrightarrow A \Leftrightarrow q$ ; confidence 0.997
127. ; $\operatorname { char } ( Y ^ { \chi } ) = \pi ^ { \mu } \chi g _ { \chi } ( T )$ ; confidence 0.844
128. ; $e _ { n } = \lambda _ { p } ( K / k ) n + \mu _ { p } ( K / k ) p ^ { n } + \nu _ { p } ( K / k )$ ; confidence 0.928
129. ; $Ma = \frac { u } { c } , Re = \frac { u l } { \nu } , Pr = \frac { \nu } { \kappa }$ ; confidence 0.275
130. ; $\operatorname { cosh } \delta = | - X _ { 0 } Y _ { 0 } + \sum X _ { t } Y _ { t } |$ ; confidence 0.873
131. ; $( E ) < \delta \Rightarrow \operatorname { mes } ( f ( E ) ) < \epsilon$ ; confidence 0.350
132. ; $\Psi ( x , \theta ) = ( \partial / \partial \theta ) \rho ( x , \theta )$ ; confidence 0.996
133. ; $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ ; confidence 0.790
134. ; $\| P ( D ) ( \phi ) \| _ { 2 } \geq G \| \phi \| _ { 2 } ( L ^ { 2 } \text { norms } )$ ; confidence 0.343
135. ; $v = \frac { D x } { D t } = ( \frac { \partial x } { \partial t } ) | _ { x ^ { 0 } }$ ; confidence 0.975
136. ; $V _ { 2 } = \rho _ { 1 } \oplus \rho _ { 196883 } \oplus \rho _ { 21296876 }$ ; confidence 0.681
137. ; $\hat { K } = \{ z \in C ^ { n } : | P ( z ) | \leq \| P \| _ { K } , \forall P \in P \}$ ; confidence 0.228
138. ; $\sigma _ { 1 } ^ { 3 } \sigma _ { 2 } ^ { - 1 } \sigma _ { 1 } \sigma _ { 2 } ^ { - 1 }$ ; confidence 0.988
139. ; $D _ { + } = \{ f \in D : \text { freal valued, } f ( s ) = 0 \text { for } s < 0 \}$ ; confidence 0.728
140. ; $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ ; confidence 0.145
141. ; $\lambda _ { 1 } \geq \frac { 4 \pi ^ { 2 } \dot { y } _ { 0,1 } ^ { 2 } } { L ^ { 2 } }$ ; confidence 0.325
142. ; $= ( F ( . ) , ( h ( \ldots , y ) , ( h ( , x ) , h ( \ldots , x ) ) _ { H } ) _ { H } ) _ { H } =$ ; confidence 0.186
143. ; $= 1 - \frac { 6 \sum _ { i = 1 } ^ { n } ( R _ { i } - S _ { i } ) ^ { 2 } } { n ( n ^ { 2 } - 1 ) }$ ; confidence 0.956
144. ; $\sigma ( u ) = \gamma ( u _ { 1 } ) \oplus \ldots \oplus \gamma ( u _ { m } )$ ; confidence 0.818
145. ; $\{ \alpha , b \} _ { p } = ( - 1 ) ^ { \alpha \beta } r ^ { \beta } s ^ { \alpha }$ ; confidence 0.934
146. ; $U ( L ) = T ( L ) / \{ x \otimes y - ( - 1 ) ^ { p ( x ) p ( y ) } y \otimes x - [ x , y ] \}$ ; confidence 0.282
147. ; $B _ { V } \otimes _ { W } ( x \otimes y ) = ( - 1 ) ^ { p ( x ) p ( y ) } ( y \otimes x )$ ; confidence 0.270
148. ; $E ( a ) = \operatorname { exp } ( \int _ { 0 } ^ { \infty } t s ( t ) s ( - t ) d t )$ ; confidence 0.496
149. ; $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ ; confidence 0.267
150. ; $\sigma _ { \pi } ( A , X ) = \sigma _ { \delta } ( A , X ) = \sigma _ { T } ( A , X )$ ; confidence 0.631
151. ; $\operatorname { dim } ( \Gamma _ { x } \cap ( R ^ { n } \times \{ 0 \} ) ) = i$ ; confidence 0.706
152. ; $W _ { 2 } = S _ { 2 } e ^ { \sum _ { 1 } ^ { \infty } y _ { k } ( \Lambda ^ { t } ) ^ { k } }$ ; confidence 0.841
153. ; $\phi ( z ) = z ^ { k } + \alpha _ { 1 } z ^ { k - 1 } + \ldots + \alpha _ { k } \neq 0$ ; confidence 0.926
154. ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { k _ { 2 } } | > \delta _ { 2 } \geq$ ; confidence 0.199
155. ; $M _ { 3 } ( k ) = ( \sum _ { j = 1 } ^ { n } | b _ { j } | ^ { 2 } | z _ { j } | ^ { 2 k } ) ^ { 1 / 2 }$ ; confidence 0.977
156. ; $\operatorname { Deg } ( F , \overline { D } \square ^ { n + 1 } , \theta )$ ; confidence 0.881
157. ; $\operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta )$ ; confidence 0.961
158. ; $y _ { \lambda } = \sum _ { \pi \in C ( t ) } \operatorname { sg } ( \pi ) \pi$ ; confidence 0.648
159. ; $z _ { \lambda } = e _ { \lambda } y _ { \lambda } \in E \otimes ^ { \gamma }$ ; confidence 0.166
160. ; $[ X , Y ] = \langle \sigma X , Y \rangle _ { \Phi } ^ { * } , \Phi ^ { \prime }$ ; confidence 0.924
161. ; $( Op ( a ) u ) ( x ) = \int e ^ { 2 i \pi x . \xi } a ( x , \xi ) \hat { a } ( \xi ) d \xi$ ; confidence 0.079
162. ; $( \kappa \partial _ { \vec { \alpha } } + M _ { \dot { \alpha } } ) \psi = 0$ ; confidence 0.136
163. ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909
164. ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i \varepsilon }$ ; confidence 0.839
165. ; $W ^ { a } ( t ) = \cup _ { 0 \leq s \leq t } B _ { a } ( \beta ( s ) ) , \quad t \geq 0$ ; confidence 0.291
166. ; $d _ { H } ( A , B ) = \operatorname { sup } \{ | d ( x , A ) - d ( x , B ) | : x \in X \}$ ; confidence 0.487
167. ; $T ( \nu ) = \operatorname { lim } _ { j \rightarrow \infty } I ( u _ { j } )$ ; confidence 0.494
168. ; $= \sqrt { a } \sum _ { k = - \infty } ^ { \infty } f ( a t + a k ) e ^ { - 2 \pi i k w }$ ; confidence 0.779
169. ; $H ^ { n } ( X ; G ) = \operatorname { lim } _ { \square } H ^ { n } ( \alpha ; G )$ ; confidence 0.237
170. ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117
171. ; $^ { * } L D S = \cup \{ \text { Alg } Mod ^ { * } L D S _ { P } : \text { Paset } \}$ ; confidence 0.080
172. ; $E ( \Gamma , \Delta ) \dagger _ { D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 0.498
173. ; $\epsilon _ { i , 0 } ( x , y , z , w ) \approx \epsilon _ { i , 1 } ( x , y , z , w )$ ; confidence 0.656
174. ; $\| U ( t , s ) \| _ { X } \leq M e ^ { \beta ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.953
175. ; $\| f ( t ) - f ( s ) \| \leq C _ { 1 } | t - s | ^ { \alpha } , \quad s , t \in [ 0 , T ]$ ; confidence 0.997
176. ; $P _ { q } ^ { \dagger } ( n ) = \frac { 1 } { n } \sum _ { r | n } \mu ( r ) q ^ { n / r }$ ; confidence 0.230
177. ; $\forall x _ { i } \in D ( A ) , y _ { i } \in A x _ { i } , i = 1,2 , \lambda \geq 0$ ; confidence 0.607
178. ; $\operatorname { Ad } ( G ) X = \{ \operatorname { Ad } ( g ) X : g \in G \}$ ; confidence 0.816
179. ; $\mu ( \alpha , x ) = \mu _ { 0 } ( \alpha ) + \mu _ { 1 } ( \alpha ) K \Psi ( x )$ ; confidence 0.910
180. ; $\alpha _ { 0 } x ^ { n } + \alpha _ { 1 } x ^ { n - 1 } + \ldots + \alpha _ { n } = 0$ ; confidence 0.333
181. ; $\{ x y \{ z u v \} \} = \{ x y z \} u v \} + \{ z \{ x y u \} v \} + \{ z u \{ x y v \} \}$ ; confidence 0.800
182. ; $\sum _ { p } v _ { p } ( f ) \operatorname { log } ( p ) + v _ { \infty } ( f ) = 0$ ; confidence 0.654
183. ; $r _ { P } ( \alpha , b ) = r _ { P } ( \alpha ) , r _ { P } ( b ) . ( \alpha , b ) _ { P }$ ; confidence 0.242
184. ; $\rho _ { c \varepsilon } ( g ) = g ( \sqrt { \alpha } ) / \sqrt { \alpha }$ ; confidence 0.179
185. ; $M ^ { U } ( E ) = \{ x \in X : \operatorname { sp } _ { U } ( x ) \subseteq E \}$ ; confidence 0.813
186. ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
187. ; $\operatorname { det } _ { Q } ^ { - 1 } ( F ^ { i + 1 - m } H _ { DR } ^ { i } ( X / R ) )$ ; confidence 0.087
188. ; $( M ) \geq \alpha ( n ) ( \frac { \operatorname { inj } M } { \pi } ) ^ { n }$ ; confidence 0.479
189. ; $g ( t ) \sim \sum _ { n = - \infty } ^ { \infty } b _ { n } e ^ { i n t } , b _ { 0 } = 0$ ; confidence 0.975
190. ; $\hat { R } _ { R _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } R ^ { n }$ ; confidence 0.185
191. ; $\psi ( y ) = e ^ { i \eta \cdot y } \phi ( y ) \text { a.e. for } y \in R ^ { N }$ ; confidence 0.363
192. ; $= F ( s , t ) \| \frac { r } { F ( s , t ) } x + \frac { 1 } { F ( s , t ) } ( s y + t z ) \| =$ ; confidence 0.859
193. ; $z ^ { \alpha } = z _ { 1 } ^ { \alpha _ { 1 } } \ldots z _ { n } ^ { \alpha _ { n } }$ ; confidence 0.447
194. ; $ev _ { V } ^ { \prime } : V ^ { * } \otimes V \rightarrow \underline { 1 }$ ; confidence 0.221
195. ; $( a \otimes c ) ( b \otimes d ) = \alpha . \Psi _ { C , B } ( c \otimes b ) . d$ ; confidence 0.098
196. ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { N } }$ ; confidence 0.496
197. ; $\operatorname { lim } _ { x \rightarrow \infty } m _ { i } ( E _ { n } ) = 0$ ; confidence 0.397
198. ; $\prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.742
199. ; $\rho _ { j k } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.727
200. ; $( X _ { \nu } f ) ( x , y ) = \int _ { - \infty } ^ { \infty } f ( x + t y ) d \nu ( t )$ ; confidence 0.982
201. ; $g = \{ d x ^ { 1 } \otimes d x ^ { 1 } + \ldots + d x ^ { p } \otimes d x ^ { p } \} +$ ; confidence 0.376
202. ; $W ( \mathfrak { g } ) = R ( \mathfrak { g } ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.092
203. ; $R ( \mathfrak { g } ) = W ( \mathfrak { g } ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.292
204. ; $\lambda _ { k } ( t ) = \alpha ( t ) e ^ { Z _ { k } ^ { T } ( t ) \beta } I _ { k } ( t )$ ; confidence 0.883
205. ; $\langle d T , \phi \rangle = ( - 1 ) ^ { p + 1 } \langle T , d \phi \rangle$ ; confidence 0.866
206. ; $e _ { N } ( F _ { d } ) = \operatorname { inf } _ { Q _ { R } } e ( Q _ { X } , F _ { d } )$ ; confidence 0.073
207. ; $( S - F _ { 3 } S F _ { 3 } ^ { * } ) \leq \operatorname { rank } ( R - F R F ^ { * } )$ ; confidence 0.665
208. ; $f ( \phi | \theta ) = f ( \theta , \phi ) / \int f ( \theta , \phi ) d \phi$ ; confidence 0.994
209. ; $\epsilon \in [ 0 , ( \sum _ { i = 1 } ^ { \infty } \lambda _ { i } ) ^ { 1 / 2 } ]$ ; confidence 0.996
210. ; $( ( \neg \varphi \rightarrow \varphi ) \rightarrow \varphi ) = 1$ ; confidence 0.999
211. ; $( h _ { 1 } ^ { \prime } , h _ { 2 } ^ { \prime } , p ^ { \prime } , W ^ { \prime } )$ ; confidence 0.979
212. ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { R } }$ ; confidence 0.342
213. ; $c _ { k } T N ^ { - k } \leq | f ^ { ( k ) } ( x ) | \leq c _ { k } ^ { \prime } T N ^ { - k }$ ; confidence 0.729
214. ; $U _ { N } ^ { ( k ) } ( x ) = x ^ { 1 - n } F _ { N } ^ { ( k ) } ( x ^ { k } ) , n = 1,2 , \ldots$ ; confidence 0.329
215. ; $\mu _ { R _ { P } } ( M _ { P } ) = \mu _ { Q ( R / P ) } ( M \otimes _ { R / P } Q ( R / P ) )$ ; confidence 0.610
216. ; $f ( ( A Z + B ) ( C Z + D ) ^ { - 1 } ) = \operatorname { det } ( C Z + D ) ^ { k } f ( Z )$ ; confidence 0.918
217. ; $F _ { \sigma } \in \tilde { O } ( ( \Omega + \Gamma _ { \sigma } ) \cap U )$ ; confidence 0.642
218. ; $\mu ( A ) = \operatorname { inf } \{ \| 7 \| : \alpha ( A - T ) = \infty \}$ ; confidence 0.341
219. ; $\operatorname { Tr } _ { E / F } ( z ) = z + z ^ { q } + \ldots + z ^ { q ^ { n - 1 } }$ ; confidence 0.790
220. ; $S ( \phi ) = \int \{ \xi ( x ) , \phi ( x ) \} \theta ( x ) d H ^ { m } | _ { R ( x ) }$ ; confidence 0.257
221. ; $\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$ ; confidence 0.696
222. ; $Y = \operatorname { ker } ( \pi ) \oplus \operatorname { im } ( \pi )$ ; confidence 0.947
223. ; $Ch ( \text { ind } ( P ) ) = ( - 1 ) ^ { n } \pi * ( \text { ind } ( [ a ] ) T ( M | B ) )$ ; confidence 0.201
224. ; $\sum _ { k = 0 } ^ { \infty } ( k + 1 ) | \Delta ^ { 2 } \alpha _ { k } | < \infty$ ; confidence 0.706
225. ; $( x ) = \{ y : y < p \text { zfor allz } \in \operatorname { Succ } ( x ) \}$ ; confidence 0.516
226. ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
227. ; $\tau _ { n } = \frac { S } { \sqrt { n ( n - 1 ) / 2 - T } \sqrt { n ( n - 1 ) / 2 - U } }$ ; confidence 0.917
228. ; $u ( x , t ) = i \sum _ { k } \hat { a } _ { k } ( t ) \operatorname { exp } ( i k x )$ ; confidence 0.595
229. ; $d \cdot e = \{ b \in B : \exists \beta \subseteq e ( b , \beta ) \in d \}$ ; confidence 0.477
230. ; $T _ { E , \varphi } R ^ { * } = T _ { E } R ^ { * } \bigotimes _ { T ^ { 0 } E } F _ { p }$ ; confidence 0.771
231. ; $L ( - x ) = - L ( x ) , \quad - \frac { \pi } { 2 } \leq x \leq \frac { \pi } { 2 }$ ; confidence 0.996
232. ; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { lop } } f ( x ) d s : = R f$ ; confidence 0.443
233. ; $P ( x _ { 1 } ^ { - 1 } , \ldots , x _ { n } ^ { - 1 } ) / P ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.248
234. ; $\frac { D v } { D t } = \frac { \partial v } { \partial t } + ( v . \nabla ) v$ ; confidence 0.578
235. ; $f _ { X | Y } ( X | Y ) = \frac { f _ { X , Y } ( X , Y ) } { f _ { Y } ( Y ) } , f _ { Y } ( Y ) > 0$ ; confidence 0.492
236. ; $m _ { - k } = L ( z ^ { - k } ) = \overline { L ( z ^ { k } ) } = \overline { m } _ { k }$ ; confidence 0.907
237. ; $\sigma : I ( B ) \cap C ^ { \prime } \cap N ^ { \perp } \rightarrow M ( B )$ ; confidence 0.996
238. ; $m \mapsto P ( \psi _ { \mu } ( m ) , \mu ) = P ( m , F ) , M _ { F } \rightarrow F$ ; confidence 0.860
239. ; $A \stackrel { x } { \rightarrow } B \stackrel { t } { \rightarrow } B$ ; confidence 0.437
240. ; $f \in H _ { p } ^ { r } ( M _ { 1 } , \ldots , M _ { n } ; \Omega ) , \quad M _ { l } > 0$ ; confidence 0.088
241. ; $y _ { 1 } = y _ { 0 } + h \sum _ { l = 1 } ^ { s } b _ { l } f ( x _ { 0 } + c _ { l } h , g _ { z } )$ ; confidence 0.263
242. ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897
243. ; $\| f \| _ { W ^ { k - 1 } } L _ { \Phi } ( \partial \Omega ) ^ { + \text { inf } }$ ; confidence 0.374
244. ; $C ( E , \Omega ) = \operatorname { sup } \{ C ( K ) : K \subset \Omega \}$ ; confidence 0.984
245. ; $v = \sqrt { y ^ { T } H y } ( \frac { s } { s ^ { T } y } - \frac { H y } { y ^ { T } H y } )$ ; confidence 0.291
246. ; $w = \sqrt { s ^ { T } B s } ( \frac { y } { y ^ { T } s } - \frac { B s } { s ^ { T } B s } )$ ; confidence 0.997
247. ; $( f ( x ) , K ( x , y ) ) = ( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , K ( x , y ) ) =$ ; confidence 0.943
248. ; $\xi ( s ) = \xi ( 0 ) \prod _ { \rho } ( 1 - \frac { s } { \rho } ) e ^ { s / \rho }$ ; confidence 0.959
249. ; $[ x _ { 1 } , y _ { 1 } ] + [ x _ { 2 } , y _ { 2 } ] = [ x _ { 1 } + x _ { 2 } , y _ { 1 } + y _ { 2 } ]$ ; confidence 0.971
250. ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) = \tau$ ; confidence 0.993
251. ; $L _ { \aleph } \alpha ( x ; t ) = \partial _ { x } \alpha ( g ( x ; t ) * f ( x ) )$ ; confidence 0.108
252. ; $U ^ { i } ( f ) = \sum _ { j = 1 } ^ { m _ { i } } f ( x _ { j } ^ { i } ) \cdot a _ { j } ^ { i }$ ; confidence 0.588
253. ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572
254. ; $\sum _ { \operatorname { max } \backslash \leq N } \Delta _ { m } ( f )$ ; confidence 0.086
255. ; $V _ { q } ^ { p } = ( ( \otimes ^ { p } V ) ) \otimes ( ( \otimes ^ { q } V ^ { * } ) )$ ; confidence 0.693
256. ; $\theta \rightarrow g \theta = ( g _ { x } ^ { i } d u ^ { i \varepsilon } )$ ; confidence 0.228
257. ; $\{ e _ { 1 } , \ldots , e _ { i } , i , 1 \leq i _ { 1 } < \ldots < i _ { k } \leq n \}$ ; confidence 0.091
258. ; $g ( e ^ { i t } ) = \rho ( \theta ( t ) ) e ^ { i \theta ( t ) } ( \forall t \in R )$ ; confidence 0.991
259. ; $= Z ^ { 2 } \rho _ { \text { atom } } ^ { TF } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 )$ ; confidence 0.448
260. ; $\times e ^ { \sum ( y _ { i } - y _ { i } ^ { \prime } ) z ^ { - i } } z ^ { n - w - 1 } d z$ ; confidence 0.124
261. ; $t ( r + 1 , r ) \leq \frac { \operatorname { ln } r } { 2 r } ( 1 + \circ ( 1 ) )$ ; confidence 0.345
262. ; $| z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | > \frac { m + 2 n } { m + n } \geq$ ; confidence 0.941
263. ; $M _ { 6 } = \operatorname { min } _ { j } | \operatorname { arc } z _ { j } |$ ; confidence 0.504
264. ; $M _ { 4 } = \operatorname { min } _ { 1 \leq j < k \leq n } | z _ { j } - z _ { k } |$ ; confidence 0.878
265. ; $( t - r ) : ( \Gamma _ { S ^ { n } } ) \rightarrow ( E ^ { n + 1 } \backslash 0 )$ ; confidence 0.977
266. ; $\sum _ { j = 1 } ^ { n } ( \frac { \partial X _ { j } } { \partial z } ) ^ { 2 } = 0$ ; confidence 0.911
267. ; $\phi _ { v } : \operatorname { WC } ( A , k ) \rightarrow WC ( A , k _ { v } )$ ; confidence 0.456
268. ; $h ^ { \alpha } = h _ { 1 } ^ { \alpha _ { 1 } } \ldots h _ { m } ^ { \alpha _ { m } }$ ; confidence 0.284
269. ; $W ( f ) = \frac { 1 } { 2 \pi } \int _ { R ^ { 2 n } } f ( q , p ) \Omega ( q , p ) d q d p$ ; confidence 0.965
270. ; $E W ^ { ( N ) } ( t ) W ^ { ( N ) } ( s ) = \prod _ { i = 1 } ^ { N } t _ { i } \wedge s _ { i }$ ; confidence 0.398
271. ; $\sigma U , V ^ { \prime } ( u \otimes v ) = u ^ { ( 2 ) } , v \otimes u ^ { ( 1 ) }$ ; confidence 0.164
272. ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569
273. ; $[ f _ { \alpha } , f _ { \beta } ] = ( \beta - \alpha ) f _ { \alpha + \beta }$ ; confidence 0.960
274. ; $V _ { n } = \operatorname { span } \{ V _ { n } ^ { n - 2 j } : 0 \leq j \leq n \}$ ; confidence 0.994
275. ; $x \approx y = | \operatorname { K } K ( E ( x , y ) ) \approx L ( E ( x , y ) )$ ; confidence 0.366
276. ; $h ( \xi ) \in C ( \{ h ( \theta _ { 0 } ) , \ldots , h ( \theta _ { n } - 1 ) \} )$ ; confidence 0.663
277. ; $E ( \varphi , \psi ) = \{ \epsilon _ { i } ( \varphi , \psi ) : i \in I \}$ ; confidence 0.632
278. ; $= 1 + \sum | p _ { 1 } | ^ { - r _ { 1 } z } \ldots | p _ { x _ { 2 } } | ^ { - r _ { m } z } =$ ; confidence 0.052
279. ; $u ( x , t ) \in P ( x ) , \quad ( x , t ) \in \partial \Omega \times [ 0 , T ]$ ; confidence 0.999
280. ; $S ( t ) = e ^ { - t A } = \sum _ { m = 0 } ^ { \infty } \frac { ( - t A ) ^ { m } } { m ! }$ ; confidence 0.645
281. ; $Id = \{ \langle \alpha , \ldots , \alpha \rangle : \alpha \in U \}$ ; confidence 0.152
282. ; $( z _ { 1 } e ^ { i t p _ { 1 } } 1 , \ldots , z _ { N } e ^ { i t p _ { N } } ) \in \Omega$ ; confidence 0.175
283. ; $d _ { q } ( \Omega ) = \operatorname { max } _ { \Omega } | z ^ { \not q } |$ ; confidence 0.259
284. ; $Y _ { N } = \operatorname { span } \{ \psi _ { 1 } , \dots , \psi _ { N } \}$ ; confidence 0.369
285. ; $X _ { n } = \operatorname { span } \{ \phi _ { 1 } , \dots , \phi _ { n } \}$ ; confidence 0.461
286. ; $\Lambda ( s , \rho ) = W ( \rho ) . \Lambda ( 1 - s , \overline { \rho } )$ ; confidence 0.837
287. ; $S ^ { n } ( - t , x _ { 1 } , \dots , x _ { n } ) F _ { n } ( x _ { 1 } , \dots , x _ { n } ) =$ ; confidence 0.537
288. ; $p ( f , \tau ) = 1 + \alpha _ { 1 } ( \tau ) f + \alpha _ { 2 } ( \tau ) f ^ { 2 } +$ ; confidence 0.997
289. ; $t \geq \operatorname { deg } s _ { i } > \operatorname { deg } r _ { i }$ ; confidence 0.489
290. ; $\Delta _ { \varepsilon } ( t + 2 \pi ) = \Delta _ { \varepsilon } ( t )$ ; confidence 0.837
291. ; $\partial _ { t } f + v . \nabla _ { x } f = \frac { Q ( f ) } { \varepsilon }$ ; confidence 0.818
292. ; $\int H ( M ( u _ { f } , \xi ) , \xi ) d \xi \leq \int H ( f ( \xi ) , \xi ) d \xi$ ; confidence 0.668
293. ; $D _ { \xi } = ( 1 , v _ { 1 } , \dots , v _ { N } , | v | ^ { 2 } / 2 + I ^ { 2 } / 2 ) R _ { + }$ ; confidence 0.344
294. ; $\rho ( f ^ { \prime } ) = [ f ^ { \prime } ] - f ^ { \prime } + \frac { 1 } { 2 }$ ; confidence 1.000
295. ; $( \rho | \alpha _ { i } ) = \frac { 1 } { 2 } ( \alpha _ { i } | \alpha _ { i } )$ ; confidence 0.998
296. ; $S _ { \Lambda } = e ^ { \Lambda + \rho } \sum _ { s } \epsilon ( s ) e ^ { s }$ ; confidence 0.314
297. ; $\delta : = ( 1 / 2 ) \sum _ { \alpha \in S ^ { + } } \alpha \in b _ { R } ^ { * }$ ; confidence 0.394
298. ; $\Phi : ( \otimes ) \otimes \rightarrow \otimes ( \varnothing )$ ; confidence 0.496
299. ; $\operatorname { lim } _ { x \rightarrow \infty } m _ { x } ( E ) = m ( E )$ ; confidence 0.378
300. ; $s _ { 1 } ( \zeta ) d \zeta _ { 1 } + \ldots + s _ { n } ( \zeta ) d \zeta _ { n }$ ; confidence 0.956
Maximilian Janisch/latexlist/latex/NoNroff/10. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/10&oldid=44420