Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/9

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 23:13, 12 February 2020 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 9 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

List

1. o130010144.png ; $\rho = \operatorname { sup } _ { x \in S _ { 1 } } \text { inf } y \in S _ { 2 } | x - y |$ ; confidence 0.460

2. o13001045.png ; $\| F f \| _ { L } 2 _ { \langle R ^ { 3 } \rangle } = \| f \| _ { L ^ { 2 } ( D ^ { \prime } ) }$ ; confidence 0.369

3. o13003037.png ; $e _ { j } ^ { * } e _ { k } = \sum _ { l = 1 } ^ { 8 } ( \sqrt { 3 } d _ { j k l } - f _ { j k l } ) e _ { l }$ ; confidence 0.513

4. o13005066.png ; $U = \left( \begin{array} { c c } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.563

5. o130060172.png ; $i \frac { \partial f } { \partial t _ { 2 } } + A _ { 2 } f = \Phi ^ { * } \sigma _ { 2 } u$ ; confidence 0.971

6. o130060126.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) = ( f ( \lambda _ { 1 } , \lambda _ { 2 } ) ) ^ { r }$ ; confidence 0.582

7. o130060171.png ; $i \frac { \partial f } { \partial t _ { 1 } } + A _ { 1 } f = \Phi ^ { * } \sigma _ { 1 } u$ ; confidence 0.968

8. p13009013.png ; $P ( x , \xi ) = \frac { r ^ { 2 } - | x - x _ { 0 } | ^ { 2 } } { \omega _ { n } r | x - \xi | ^ { n } }$ ; confidence 0.464

9. p0745208.png ; $\alpha R \dot { b } \subseteq P \Rightarrow \alpha \in P \text { or } b \in P$ ; confidence 0.334

10. q13004028.png ; $K ( f ) = \operatorname { max } \{ K _ { \circlearrowleft } ( f ) , K _ { l } ( f ) \}$ ; confidence 0.296

11. r1300306.png ; $\frac { p } { q } = a _ { n } + \frac { 1 } { a _ { n } - 1 + \ldots + \frac { 1 } { i k _ { 1 } } }$ ; confidence 0.177

12. s12005075.png ; $V = \left( \begin{array} { l l } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.577

13. s13040049.png ; $H ^ { j } ( X \times _ { G } E G , Z / p ) \rightarrow H ^ { j } ( X ^ { G } \times B G , Z / p )$ ; confidence 0.849

14. s120230141.png ; $( S _ { 1 } , \dots , S _ { r } ) \sim L _ { r } ^ { ( 1 ) } ( f , n _ { 1 } / 2 , \dots , n _ { r } / 2 )$ ; confidence 0.259

15. s12027019.png ; $\{ x _ { 1 } , x , \dots , x _ { 8 } , x \} \subseteq \{ y _ { 1 } , m , \dots , y _ { m } , m \}$ ; confidence 0.074

16. s12032081.png ; $T = \left( \begin{array} { c c } { P } & { Q } \\ { R } & { S } \end{array} \right)$ ; confidence 0.533

17. s120340109.png ; $\operatorname { lim } _ { s \rightarrow \pm \infty } w ( s , t ) = x _ { \pm } ( t )$ ; confidence 0.908

18. t13014066.png ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942

19. t12013014.png ; $\frac { \partial L _ { i } } { \partial y _ { N } } = [ ( L _ { 2 } ^ { n } ) _ { - } , L _ { i } ]$ ; confidence 0.429

20. t12013013.png ; $\frac { \partial L _ { i } } { \partial x _ { N } } = [ ( L _ { 1 } ^ { N } ) _ { + } , L _ { i } ]$ ; confidence 0.220

21. w12007055.png ; $= ( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } e ^ { i ( p D + q X ) } \hat { \sigma } ( p , q ) d p d q$ ; confidence 0.420

22. w120090160.png ; $\langle g x , y \rangle = \langle x , g ^ { T } y \rangle , \quad \forall g \in G$ ; confidence 0.652

23. w130080190.png ; $\Theta = ( u , \delta v ) - ( 1 / \kappa ) \sum H _ { \alpha } \delta t _ { \alpha }$ ; confidence 0.733

24. w13008062.png ; $Z ( t , \phi ) = \int _ { \phi _ { 0 } } D \phi \operatorname { exp } [ S ( t , \phi ) ]$ ; confidence 0.986

25. w12019034.png ; $\operatorname { Tr } A B = \int _ { R ^ { 3 N } \times R ^ { 3 N } } A _ { w } B _ { w } d x d p$ ; confidence 0.174

26. x12001085.png ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { \dagger } [ G _ { \text { inn } } ]$ ; confidence 0.185

27. z13011096.png ; $- \frac { 1 } { k + d n _ { k } } \cdot [ ( i + d ) \mu ( i , m ) - ( i + d + 1 ) \mu ( i + 1 , m ) ] = 0$ ; confidence 0.756

28. a130040638.png ; $\langle N e _ { S _ { P } } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } \rangle$ ; confidence 0.335

29. a12007031.png ; $\| f ( t ) - f ( s ) \| \leq C _ { 1 } | t - s | ^ { \alpha } , \quad 0 \leq s \leq t \leq T$ ; confidence 0.997

30. a12008044.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.940

31. a12012082.png ; $\langle x _ { t } ^ { \prime } , y _ { t } ^ { \prime } , c _ { t } ^ { \prime } \rangle$ ; confidence 0.710

32. a12015022.png ; $ad : \mathfrak { g } \rightarrow \operatorname { End } ( \mathfrak { g } )$ ; confidence 0.182

33. a12025053.png ; $\{ ( 1 , t , t ^ { 2 } , \dots , t ^ { n } ) : t \in GF ( q ) \} \cup \{ ( 0 , \dots , 0,1 ) \}$ ; confidence 0.378

34. a1302803.png ; $a _ { n } + 1 = \frac { 1 } { 2 } ( a _ { n } + b _ { n } ) , b _ { n } + 1 = \sqrt { a _ { n } b _ { n } }$ ; confidence 0.299

35. a120260106.png ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205

36. b12002047.png ; $\| \beta _ { n , F } - \beta _ { n } \| = o ( \frac { 1 } { n ^ { 1 / 2 - \varepsilon } } )$ ; confidence 0.248

37. b1301104.png ; $f ( x ) : = B _ { n } ( f , x ) : = \sum _ { j = 0 } ^ { n } f ( \frac { j } { n } ) b _ { j } ^ { n } ( x )$ ; confidence 0.692

38. b13020077.png ; $[ \mathfrak { h } , \mathfrak { g } _ { \pm } ] \subset \mathfrak { g } _ { \pm }$ ; confidence 0.938

39. c120010174.png ; $f \mapsto \sum _ { k = 1 } ^ { n } a _ { k } \frac { \partial f } { \partial z _ { k } }$ ; confidence 0.541

40. c1301009.png ; $( C ) \int _ { A } f d m = \int _ { 0 } ^ { + \infty } m ( A \cap F _ { \alpha } ) d \alpha$ ; confidence 0.862

41. c13015039.png ; $( u _ { \varepsilon } ) _ { \varepsilon > 0 } \subset C ^ { \infty } ( \Omega )$ ; confidence 0.987

42. c13016051.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { t ( n ) } { s ( n ) } = 0$ ; confidence 0.810

43. c12021081.png ; $L [ ( \Lambda _ { n } , T _ { n } ) | P _ { n } ^ { \prime } ] \Rightarrow L ^ { \prime }$ ; confidence 0.963

44. c12021088.png ; $L ( \Lambda _ { n } | P _ { n } ) \Rightarrow N ( - \sigma ^ { 2 } / 2 , \sigma ^ { 2 } )$ ; confidence 0.991

45. c12031040.png ; $e _ { N } ( H _ { i j } ^ { k } ) \leq c _ { k , d } , \delta , n ^ { - k + \delta } , \forall n$ ; confidence 0.112

46. d12002045.png ; $= \operatorname { min } _ { x \in X } c ^ { T } x + u _ { 1 } ^ { T } ( A _ { 1 } x - b _ { 1 } ) =$ ; confidence 0.685

47. d12012049.png ; $\alpha ^ { \prime } = ( \alpha ^ { \prime } 1 , \ldots , \alpha ^ { \prime m } )$ ; confidence 0.334

48. e12010015.png ; $f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$ ; confidence 0.640

49. e12010017.png ; $c ^ { em } = f ^ { em } \times x + ( P \times E ^ { \prime } + M ^ { \prime } \times B )$ ; confidence 0.835

50. e12010036.png ; $t ^ { em \cdot f } = E \otimes E + B \otimes B - \frac { 1 } { 2 } ( E ^ { 2 } + B ^ { 2 } ) 1$ ; confidence 0.422

51. e1201808.png ; $\eta ( s ) = \sum _ { a _ { n } \neq 0 } \frac { a _ { n } } { | a _ { n } | } | a _ { n } | ^ { - s }$ ; confidence 0.420

52. e12021043.png ; $w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w \prime } ) } , \quad z \in C$ ; confidence 0.699

53. f13010017.png ; $( ( k _ { n } ) _ { n = 1 } ^ { \infty } , ( l _ { n } ) _ { n = 1 } ^ { \infty } ) \in A _ { p } ( G )$ ; confidence 0.937

54. g1200103.png ; $\hat { f } ( \omega ) = \int _ { - \infty } ^ { \infty } e ^ { - i \omega t } f ( t ) d t$ ; confidence 0.801

55. g130040202.png ; $\operatorname { dist } ( T _ { x } , T _ { y } ) \leq C ( r | x - y | ) ^ { 1 - \epsilon }$ ; confidence 0.761

56. h04602020.png ; $\| G \| _ { \infty } = \operatorname { sup } _ { | x \| _ { 2 } \leq 1 } \| y \| _ { 2 }$ ; confidence 0.122

57. h13002045.png ; $\gamma \cap \alpha _ { 1 } = \ldots = \gamma \cap \alpha _ { q } = \emptyset$ ; confidence 0.915

58. i13003076.png ; $\pi * : H _ { c } ^ { * } ( T _ { \text { yert } } ^ { * } Y ) \rightarrow H ^ { * } - 2 n ( B )$ ; confidence 0.299

59. i13005084.png ; $\operatorname { lim } _ { k \rightarrow 0 } k \alpha ( k ) [ r _ { + } ( k ) + 1 ] = 0$ ; confidence 0.981

60. i13005088.png ; $\{ r _ { - } ( k ) , i k _ { j } , ( m _ { j } ^ { - } ) ^ { 2 } : 1 \leq j \leq J , \forall k > 0 \}$ ; confidence 0.965

61. j13007065.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z )$ ; confidence 0.963

62. k055840309.png ; $\Theta ( z ) = U _ { 22 } + z U _ { 21 } ( I - z U _ { 11 } ) ^ { - 1 } U _ { 12 } \quad ( z \in D )$ ; confidence 0.928

63. k13006023.png ; $1 \leq m \leq \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.935

64. k13007046.png ; $\| \mathfrak { u } \| _ { 2 } = [ \int _ { - L / 2 } ^ { L / 2 } u ^ { 2 } ( x , t ) d x ] ^ { 1 / 2 }$ ; confidence 0.597

65. l13010066.png ; $\operatorname { app } a _ { e } ( x , \alpha , p ) \subset [ - \delta , \delta ]$ ; confidence 0.166

66. m13011015.png ; $\frac { D f } { D t } = ( \frac { \partial f ( x ^ { 0 } , t ) } { \partial t } ) | _ { x 0 }$ ; confidence 0.729

67. m130140157.png ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } z ; \frac { \partial f ( z ) } { \partial z _ { j } }$ ; confidence 0.739

68. m130140160.png ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } z , \frac { \partial f ( z ) } { \partial z _ { j } }$ ; confidence 0.469

69. m13025026.png ; $M ( \Omega ) \subset D ^ { \prime } ( \Omega ) \times D ^ { \prime } ( \Omega )$ ; confidence 0.938

70. m13025020.png ; $H ^ { s } ( \Omega ) \times H ^ { - s } ( \Omega ) \rightarrow H ^ { - s } ( \Omega )$ ; confidence 0.986

71. m130260127.png ; $0 \rightarrow A \rightarrow X \stackrel { \pi } { \pi } , B \rightarrow 0$ ; confidence 0.263

72. n12002018.png ; $\theta \mapsto k ^ { \prime } \mu ( \theta ) , \Theta ( \mu ) \rightarrow E$ ; confidence 0.866

73. n067520361.png ; $\dot { x } _ { i } = \phi _ { i } ( x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.300

74. n067520363.png ; $\dot { y } _ { i } = \psi _ { i } ( x _ { 1 } , \ldots , y _ { n } ) , \quad i = 1 , \ldots , n$ ; confidence 0.377

75. o130010149.png ; $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.985

76. o13005033.png ; $\mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - }$ ; confidence 0.946

77. o13006016.png ; $\sigma _ { 1 } \Phi A _ { 2 } - \sigma _ { 2 } \Phi A _ { 1 } = \tilde { \gamma } \Phi$ ; confidence 0.444

78. o13006015.png ; $\sigma _ { 1 } \Phi A _ { 2 } ^ { * } - \sigma _ { 2 } \Phi A _ { 1 } ^ { * } = \gamma \Phi$ ; confidence 0.732

79. o13006074.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \tilde { \gamma }$ ; confidence 0.438

80. p13007063.png ; $L _ { E } ( z ) = \operatorname { sup } \{ v ( z ) : v \in L , v \leq 0 \text { on } E \}$ ; confidence 0.747

81. p13007064.png ; $L _ { E } ^ { * } ( z ) = \operatorname { limsup } _ { w \rightarrow z } L _ { E } ( w )$ ; confidence 0.970

82. p13009019.png ; $f ( x ) = \int _ { \partial \xi ( x _ { 0 } , r ) } P ( x , \xi ) f ( \xi ) d \sigma ( \xi )$ ; confidence 0.344

83. p12015064.png ; $\nu _ { 1 } * \chi _ { X _ { 1 } } + \ldots + \nu _ { 1 } ^ { * } \chi _ { K _ { 1 } } = \delta$ ; confidence 0.432

84. p13014035.png ; $| f ^ { C \rho } ( x ) - f ( x ) | = O ( \rho ) \text { as } \rho \rightarrow 0 , x \in U$ ; confidence 0.535

85. q12008018.png ; $FS = \frac { 1 } { 2 ( 1 - \rho ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) }$ ; confidence 0.842

86. r13007069.png ; $= \sum _ { j , m \atop j , m } K ( z _ { m } , y _ { j } ) c _ { j } \overline { \beta _ { m } }$ ; confidence 0.200

87. r1300902.png ; $f ( x _ { 1 } , \dots , x _ { n } ) = g ( a _ { 1 } x _ { 1 } + \ldots + a _ { n } x _ { n } ) = g ( a x )$ ; confidence 0.137

88. s12005031.png ; $( \frac { 1 - z _ { j } z _ { k } } { 1 - w _ { j } \overline { w } _ { k } } ) _ { j , k = 1 } ^ { n }$ ; confidence 0.527

89. s120230102.png ; $\Lambda = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { p } )$ ; confidence 0.593

90. s12034088.png ; $S _ { H } ( x ) = \int _ { D ^ { 2 } } u ^ { * } ( \omega ) + \int _ { 0 } ^ { 1 } H ( t , x ( t ) ) d t$ ; confidence 0.775

91. t13005064.png ; $( X \otimes \mathfrak { e } _ { 0 } ) \oplus ( X \otimes \mathfrak { e } _ { 1 } )$ ; confidence 0.075

92. t12005041.png ; $\overline { \Sigma } \square ^ { i } ( f ) = \cup _ { h \geq i } \Sigma ^ { i } ( f )$ ; confidence 0.746

93. t120050131.png ; $= \{ x \in \Sigma ^ { 2 } ( f ) : \quad \text { \existsa linel } \subset K _ { x }$ ; confidence 0.309

94. t13014050.png ; $\mathscr { Q } ( \underline { \operatorname { dim } } X ) = \chi _ { Q } ( [ X ] )$ ; confidence 0.149

95. t13014072.png ; $q ( v ) = \operatorname { dim } G _ { Q } ( v ) - \operatorname { dim } A _ { Q } ( v )$ ; confidence 0.221

96. t12014091.png ; $\frac { \phi } { | \phi | } = \operatorname { exp } ( \xi + \tilde { \eta } + c )$ ; confidence 0.812

97. v120020212.png ; $\{ \operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta ) \}$ ; confidence 0.978

98. v13011037.png ; $U = \frac { \Gamma } { 2 l } \operatorname { coth } \frac { \pi \dot { b } } { l }$ ; confidence 0.950

99. v13011052.png ; $\lambda = \frac { \Gamma } { 2 \pi l ^ { 2 } } ( B ^ { 2 } - \sqrt { A ^ { 2 } - C ^ { 2 } } )$ ; confidence 0.869

100. v13011038.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi \dot { b } } { l }$ ; confidence 0.735

101. w12007054.png ; $( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } \rho ( p , q , 0 ) \hat { \sigma } ( p , q ) d p d q =$ ; confidence 0.871

102. w13017020.png ; $E \varepsilon _ { t } \varepsilon _ { s } ^ { \prime } = \delta _ { s t } \Sigma$ ; confidence 0.631

103. x12003031.png ; $K ( \Omega ) = \int _ { \lambda \cap \Omega \neq \phi } d \omega ( \lambda )$ ; confidence 0.514

104. z13001077.png ; $z ( z - \operatorname { cosh } w ) / ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.998

105. z12001092.png ; $c = \operatorname { ad } e _ { - 1 } ^ { p ^ { m } - 1 } ( e _ { p ^ { m } - 2 } ^ { ( p + 1 ) / 2 } )$ ; confidence 0.237

106. z13011065.png ; $\frac { \mu _ { \aleph } ( x ) } { \mu _ { N } } \approx \frac { 1 } { ( a + b x ) ^ { 2 } }$ ; confidence 0.437

107. a130040154.png ; $\varphi \equiv \psi ( \operatorname { mod } \tilde { \Omega } _ { S 5 } T )$ ; confidence 0.768

108. a130040365.png ; $\tilde { \Omega } _ { D } F = \cap \{ \Omega G : F \subseteq G \in Fi _ { D } A \}$ ; confidence 0.356

109. a130060114.png ; $P ^ { \# } ( n ) \sim C q ^ { n } n ^ { - \alpha } \text { as } n \rightarrow \infty$ ; confidence 0.559

110. a1201304.png ; $E _ { \theta } [ H ( \theta , X ) ] = 0 , \quad \text { if } \theta = \theta ^ { * }$ ; confidence 0.398

111. a12023089.png ; $| y | \rightarrow \infty ^ { k _ { q } | d _ { q } ( \Omega ) } \sqrt { | q | } \leq 1$ ; confidence 0.127

112. a12024048.png ; $( Z , g ) = ( \operatorname { div } ( s ) , - \operatorname { log } ( h ( s , s ) ) )$ ; confidence 0.983

113. b13001083.png ; $\left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right)$ ; confidence 0.908

114. b12009043.png ; $\xi = e ^ { i \alpha \operatorname { ln } \tau } f ( z , \tau ) | _ { \tau = 1 } = z$ ; confidence 0.607

115. b110220124.png ; $r _ { D } : H _ { M } ^ { i } ( M _ { Z } , Q ( j ) ) \rightarrow H _ { D } ^ { i } ( M / R , R ( j ) )$ ; confidence 0.085

116. b0163603.png ; $\left| \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right|$ ; confidence 0.683

117. b12024024.png ; $\delta ( z ) = \operatorname { diag } ( z ^ { k _ { 1 } } , \ldots , z ^ { k _ { R } } )$ ; confidence 0.448

118. b12027095.png ; $\eta _ { i + 1 } \equiv \{ Z ( u ) : T _ { i } \leq u < T _ { i + 1 } , T _ { i + 1 } - T _ { i } \}$ ; confidence 0.974

119. b12043088.png ; $E _ { 2 } ^ { 2 } E _ { 1 } + E _ { 1 } E _ { 2 } ^ { 2 } - ( q + q ^ { - 1 } ) E _ { 2 } E _ { 1 } E _ { 2 } = 0$ ; confidence 0.995

120. b12043087.png ; $E _ { 1 } ^ { 2 } E _ { 2 } + E _ { 2 } E _ { 1 } ^ { 2 } - ( q + q ^ { - 1 } ) E _ { 1 } E _ { 2 } E _ { 1 } = 0$ ; confidence 0.994

121. b120430111.png ; $\gamma \alpha = q ^ { - 2 } \alpha \gamma , \delta \alpha = \alpha \delta$ ; confidence 0.982

122. b130260105.png ; $d [ f , S ^ { n } , S ^ { n } ] = \operatorname { deg } _ { B } [ \tilde { f } , B ( 1 ) , 0 ]$ ; confidence 0.536

123. b12051029.png ; $\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0$ ; confidence 0.985

124. c12002044.png ; $\overline { ( I ^ { \alpha } f ) } ( \xi ) = | \xi | ^ { - \alpha } \hat { f } ( \xi )$ ; confidence 0.396

125. c02211021.png ; $\theta = ( \theta _ { 1 } , \dots , \theta _ { m } ) \in \Theta \subset R ^ { m }$ ; confidence 0.456

126. c13014060.png ; $\left( \begin{array} { l l } { 3 } & { 2 } \\ { 2 } & { 3 } \end{array} \right)$ ; confidence 0.998

127. c12030057.png ; $0 \rightarrow K \rightarrow T _ { n } \rightarrow O _ { n } \rightarrow 0$ ; confidence 0.692

128. d12006011.png ; $f _ { t } ( x , t ) = \sum _ { m = - M } ^ { m = N } u _ { m } ( x , t ) T ^ { m } ( f ) , \quad t \in R$ ; confidence 0.712

129. d1301101.png ; $H ^ { 2 } = ( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) c ^ { 2 } + m _ { 0 } ^ { 2 } c ^ { 4 }$ ; confidence 0.664

130. d12020027.png ; $\frac { 1 } { T } \text { meas } \{ \tau \in [ 0 , T ] : p _ { N } ( s + i \tau ) \in A \}$ ; confidence 0.599

131. e1200903.png ; $\nabla \times E = - \frac { 1 } { c ^ { 2 } } \frac { \partial H } { \partial t }$ ; confidence 0.481

132. e1300309.png ; $\gamma P ( X , Y ) = P ( a X + c Y , b X + d Y ) \operatorname { det } ( \gamma ) ^ { d }$ ; confidence 0.917

133. e13003079.png ; $A ( \Gamma \backslash G ( R ) ) \subset C _ { 0 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.818

134. e0350007.png ; $H _ { \epsilon } ( C , X ) = \operatorname { log } _ { 2 } N _ { \epsilon } ( C , X )$ ; confidence 0.979

135. e12021041.png ; $p _ { m } ( z ) = m ! \sum _ { 0 \leq n \leq m - 1 } b _ { m } ( n + 1 ) z ^ { n } , \quad z \in C$ ; confidence 0.629

136. f13004017.png ; $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ ; confidence 0.976

137. f12010018.png ; $G _ { k } ( z ) = \sum _ { c , d \in Z ^ { 2 } \backslash 0 } ( c z + d ) ^ { - k } , k = 4,6,8$ ; confidence 0.309

138. f110160121.png ; $\psi _ { \mathfrak { A } } ^ { \mathfrak { d } } \overline { \mathfrak { a } }$ ; confidence 0.160

139. f12015056.png ; $r ( A ) = \operatorname { lim } _ { x \rightarrow \infty } \alpha ( A ^ { x } )$ ; confidence 0.600

140. g12004014.png ; $G _ { 0 } ^ { s } ( \Omega ) = G ^ { s } ( \Omega ) \cap C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.819

141. g0433808.png ; $f ( x _ { 0 } + h ) = f ( x _ { 0 } ) + ( f _ { G } ^ { \prime } ( x _ { 0 } ) , h ) + \epsilon ( h )$ ; confidence 0.955

142. h0460208.png ; $\| F \| _ { \infty } = \operatorname { esssup } _ { \omega } | F ( i \omega ) |$ ; confidence 0.497

143. h13002078.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma ^ { \phi } , \dots , \alpha _ { q } )$ ; confidence 0.258

144. i13001053.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { s } , \dots , \lambda _ { t } )$ ; confidence 0.627

145. i13002025.png ; $S _ { k } = E [ \left( \begin{array} { l } { X } \\ { k } \end{array} \right) ]$ ; confidence 0.489

146. i1300403.png ; $\frac { a 0 } { 2 } + \sum _ { k = 1 } ^ { \infty } a _ { k } \operatorname { cos } k x$ ; confidence 0.955

147. i1200401.png ; $P = \{ ( z _ { 1 } , \dots , z _ { n } ) : | z _ { j } - a _ { j } | < r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.492

148. i120080109.png ; $\chi ( \chi \propto ( T / T _ { c } - 1 ) ^ { - \gamma } \text { with } \gamma = 1 )$ ; confidence 0.927

149. i130090221.png ; $x \in \operatorname { Gal } ( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } )$ ; confidence 0.599

150. j13002018.png ; $P ( X = 0 ) \leq \operatorname { exp } ( - \frac { \lambda ^ { 2 } } { \Delta } )$ ; confidence 0.724

151. j13007049.png ; $\frac { 1 - | F ( z _ { n } ) | } { 1 - | z _ { n } | } \rightarrow d ( \omega ) < \infty$ ; confidence 0.611

152. k1201108.png ; $L = \partial + u _ { - 1 } ( x ) \partial ^ { - 1 } + u _ { - 2 } ( x ) \partial ^ { - 2 } +$ ; confidence 0.979

153. k13006029.png ; $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) \leq m$ ; confidence 0.580

154. k13006013.png ; $\left( \begin{array} { c } { \alpha _ { k } } \\ { k } \end{array} \right)$ ; confidence 0.619

155. l05702051.png ; $H ^ { i } ( X , F ) = \operatorname { lim } _ { \leftarrow n } H ^ { i } ( X , F _ { n } )$ ; confidence 0.768

156. l13001080.png ; $C _ { 1 } N ^ { n + ( n - 1 ) / 2 } \leq \| S _ { H _ { N } } \| \leq C _ { 2 } N ^ { n + ( n - 1 ) / 2 }$ ; confidence 0.759

157. l12008018.png ; $M = \frac { \partial } { \partial x } + i x \frac { \partial } { \partial y }$ ; confidence 0.992

158. l12015051.png ; $d \alpha ( x _ { 0 } , \ldots , x _ { n } ) = \sum _ { 0 \leq i < j \leq n } ( - 1 ) ^ { j } x$ ; confidence 0.599

159. l12017040.png ; $\langle \alpha , b | \alpha b \alpha = b a b , \alpha ^ { 4 } = b ^ { 5 } \rangle$ ; confidence 0.161

160. l12017038.png ; $a , b , c | c ^ { - 1 } b c = b ^ { 2 } , a ^ { - 1 } c a = c ^ { 2 } , b ^ { - 1 } a b = a ^ { 2 } \rangle$ ; confidence 0.768

161. m13025063.png ; $\rho _ { \varepsilon } ( x ) = \varepsilon ^ { - n } \rho ( x / \varepsilon )$ ; confidence 0.725

162. n06663075.png ; $\Omega ^ { k } ( f ^ { ( s ) } , \delta ) \leq M \delta ^ { r - s } , \quad \delta > 0$ ; confidence 0.659

163. n067520344.png ; $\phi ( x _ { 1 } , \dots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \dots , x _ { n } , z ) = 0 ) )$ ; confidence 0.400

164. n06752073.png ; $d _ { i } = e _ { 1 } ^ { n _ { i 1 } } \ldots e _ { s } ^ { n _ { i s } } , \quad i = 1 , \dots , r$ ; confidence 0.476

165. o13001025.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( - \alpha , - \alpha ^ { \prime } , k )$ ; confidence 0.998

166. o13001029.png ; $\sigma ( \alpha ) : = \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta$ ; confidence 0.817

167. o13006067.png ; $H = \sqrt { k _ { 1 } } , k _ { 2 } = 0 A _ { 1 } ^ { k _ { 1 } } A _ { 2 } ^ { k _ { 2 } } \Phi ^ { * } E$ ; confidence 0.232

168. o12005020.png ; $\| f \| = \operatorname { inf } \{ \epsilon > 0 : I ( f / \epsilon ) \leq 1 \}$ ; confidence 0.929

169. o12006043.png ; $\tilde { \Phi } ( s ) = \operatorname { sup } \{ | s | t - \Phi ( t ) : t \geq 0 \}$ ; confidence 0.419

170. o12006013.png ; $\operatorname { lim } _ { t \rightarrow + \infty } \Phi ( t ) / t = + \infty$ ; confidence 0.996

171. p130070123.png ; $\operatorname { log } \operatorname { tanh } C ( z , w ) \leq W ( z , w ) \leq$ ; confidence 0.999

172. q13003050.png ; $H ( \rho ) = \operatorname { Tr } \rho \operatorname { log } _ { 2 } ( \rho )$ ; confidence 0.991

173. s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882

174. s13034031.png ; $S _ { 4 } ( M ) = R L / ( b _ { 0 } L _ { 0 } + b _ { 1 } L _ { 1 } + b _ { 2 } L _ { 2 } + b _ { 3 } L _ { 3 } )$ ; confidence 0.858

175. s13051072.png ; $V = \{ ( u _ { 1 } , \dots , u _ { m } ) : u _ { i } \in V _ { i } , i \in \{ 1 , \dots , m \} \}$ ; confidence 0.390

176. s12024022.png ; $( X _ { 1 } \vee \ldots \vee X _ { k } ) = C _ { l = 1 } ^ { \infty } ( X _ { i } , x _ { i 0 } )$ ; confidence 0.098

177. s09067070.png ; $S ( g u ^ { k } ) = g S ( u ^ { k } ) , \quad g \in GL ^ { k } ( n ) , \quad u ^ { k } \in M _ { k }$ ; confidence 0.941

178. s13066011.png ; $\phi _ { N } ^ { * } ( z ) = z ^ { \sqrt { \gamma } } \overline { \phi _ { N } ( 1 / z ) }$ ; confidence 0.124

179. t13004039.png ; $T _ { n } ^ { * } ( x ) : = \sigma ^ { n } + c _ { 1 } ^ { n } x + \ldots + c _ { n } ^ { n } x ^ { n }$ ; confidence 0.412

180. t13009016.png ; $( \pi _ { X } , \rho _ { X } ) : T _ { X } \cap Y \rightarrow X \times 10 , \infty I$ ; confidence 0.656

181. t1301008.png ; $0 \rightarrow H \rightarrow T _ { 1 } \rightarrow T _ { 2 } \rightarrow 0$ ; confidence 0.990

182. t130140147.png ; $0 \rightarrow P _ { 1 } \rightarrow P _ { 0 } \rightarrow X \rightarrow 0$ ; confidence 0.747

183. t09356014.png ; $f ( x ) = \operatorname { sup } \{ f ( y ) : y \in A , y \leq x , f ( y ) < + \infty \}$ ; confidence 0.983

184. t12021084.png ; $t ( G ; x , y ) = \sum S \subseteq E ( x - 1 ) ^ { N ( G ) - r ( S ) } ( y - 1 ) ^ { | S | - r ( S ) }$ ; confidence 0.080

185. v13007024.png ; $\phi _ { int } = \phi _ { 0 } + \frac { \gamma \dot { b } ^ { 2 } \kappa } { 12 \mu }$ ; confidence 0.346

186. w12011023.png ; $= \int \int e ^ { 2 i \pi ( x - y ) \cdot \xi } a ( ( 1 - t ) x + t y , \xi ) u ( y ) d y d \xi$ ; confidence 0.470

187. w130090101.png ; $\| I _ { n } ( g ) \| _ { L } 2 _ { ( \mu ) } = \sqrt { n ! } | g | _ { L } 2 _ { ( [ 0,1 ] } ^ { n } )$ ; confidence 0.058

188. w13017046.png ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188

189. y120010135.png ; $R ( x ) _ { 12 } R ( x y ) _ { 13 } R ( y ) _ { 23 } = R ( y ) _ { 23 } R ( x y ) _ { 13 } R ( x ) _ { 12 }$ ; confidence 0.936

190. z13001058.png ; $x ( n ) = ( \frac { 3 } { 4 } n ^ { 2 } - \frac { 11 } { 4 } n - 4 ) ( - 2 ) ^ { n } + 4 ( - 3 ) ^ { n }$ ; confidence 0.999

191. z13003044.png ; $Z [ e ^ { 2 \pi i m t } f ( t + n ) ] ( t , w ) = e ^ { 2 \pi i m t } e ^ { 2 \pi i n w } ( Z f ) ( t , w )$ ; confidence 0.622

192. z13008012.png ; $\langle f , g \rangle = \int \int _ { D } f ( x , y ) \overline { g ( x , y ) } d x d y$ ; confidence 0.620

193. z130110122.png ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { d } { \rightarrow } U ( 1 - U ) ^ { x - 1 }$ ; confidence 0.374

194. t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761

195. a130040657.png ; $h ( F _ { S _ { P } } \mathfrak { M } ^ { * } L ) = F _ { S _ { P } } \mathfrak { N } ^ { * } L$ ; confidence 0.580

196. a130040276.png ; $\Delta ( x , y ) = \{ \delta _ { 0 } ( x , y ) , \ldots , \delta _ { m - 1 } ( x , y ) \}$ ; confidence 0.653

197. a130050191.png ; $\partial ( A ) = \operatorname { log } _ { p } \operatorname { card } ( A )$ ; confidence 0.995

198. a13006059.png ; $G _ { R } ^ { \# } ( n ) = A _ { R } q ^ { n } + O ( 1 ) \text { as } n \rightarrow \infty$ ; confidence 0.269

199. a12008047.png ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890

200. a12012060.png ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}$ ; confidence 0.942

201. a12023027.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ k x ] { k } = 1$ ; confidence 0.485

202. a12023048.png ; $\langle \alpha , b \rangle = \alpha _ { 1 } b _ { 1 } + \ldots + a _ { n } b _ { n }$ ; confidence 0.095

203. a13029026.png ; $\operatorname { lim } _ { t \rightarrow \pm \infty } u ( s , t ) = x ^ { \pm }$ ; confidence 0.991

204. b12009012.png ; $\frac { \partial f ( z , t ) } { \partial t } = - z f ^ { \prime } ( z , t ) p ( z , t )$ ; confidence 0.999

205. b1301202.png ; $\hat { f } ( m ) = ( 2 \pi ) ^ { - 1 } \int _ { - \infty } ^ { \pi } f ( u ) e ^ { - i m x } d u$ ; confidence 0.096

206. b12042027.png ; $\bigotimes n _ { W } = \Phi _ { V , 1 , W } \circ ( l _ { V } \otimes \text { id } )$ ; confidence 0.111

207. b12049051.png ; $\operatorname { lim } _ { n \rightarrow \infty } m _ { n } ( E ) = m _ { 0 } ( E )$ ; confidence 0.893

208. b12051094.png ; $d = d + ( \alpha - ( y _ { n } ^ { T } - 1 ) ^ { d } / y _ { n - 1 } ^ { T } s _ { n - 1 } ) s _ { n - 1 }$ ; confidence 0.200

209. b12052076.png ; $w _ { n } = \frac { B _ { n } ^ { - 1 } u _ { n } } { 1 + v _ { n } ^ { T } B _ { n } ^ { - 1 } u _ { n } }$ ; confidence 0.569

210. b12052077.png ; $B _ { N } ^ { - 1 } = \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 }$ ; confidence 0.670

211. c13004023.png ; $= \frac { 1 } { 16 } [ \zeta ( 2 , \frac { 1 } { 4 } ) - \zeta ( 2 , \frac { 3 } { 4 } ) ]$ ; confidence 0.999

212. c13004017.png ; $= \sum _ { k = 1 } ^ { \infty } \frac { \operatorname { sin } ( k z ) } { k ^ { 2 } }$ ; confidence 0.993

213. c12008068.png ; $\Delta ( \Lambda , M ) = \text { Det } [ E \otimes \Lambda - A \otimes M ] =$ ; confidence 0.504

214. c130070213.png ; $f _ { Y } ( x , y ) R ^ { \prime } ( P ) = \mathfrak { C } ( P ) \mathfrak { D } ( P , x )$ ; confidence 0.770

215. c130070172.png ; $\mathfrak { C } ( P ) = I _ { 0 } \subset \ldots \subset I _ { \delta } = R ( P )$ ; confidence 0.846

216. c13009031.png ; $( \alpha ^ { k } C _ { j } / d x ^ { k } ) ( x _ { i } ) = [ ( d C _ { j } / d x ) ( x _ { i } ) ] ^ { k }$ ; confidence 0.407

217. c12031033.png ; $\| f \| ^ { 2 } = \sum _ { \alpha _ { l } \leq k } \| D ^ { \alpha } f \| ^ { 2 } L _ { 2 }$ ; confidence 0.754

218. d13003014.png ; $\exists \lambda > 0 \forall N \in N , N > 2 : \psi _ { N } \in C ^ { \lambda N }$ ; confidence 0.950

219. d13011014.png ; $\alpha _ { x } ^ { 2 } = \alpha _ { y } ^ { 2 } = \alpha _ { z } ^ { 2 } = \beta ^ { 2 } = 1$ ; confidence 0.606

220. d12023074.png ; $R ^ { - 1 } - Z ^ { * } R ^ { - 1 } Z = \overline { H } \square ^ { * } J \overline { H }$ ; confidence 0.523

221. e12012012.png ; $Q ( \theta ^ { ( t + 1 ) } | \theta ^ { ( t ) } ) \geq Q ( \theta | \theta ^ { ( t ) } )$ ; confidence 0.959

222. e1200902.png ; $\nabla \times H = \frac { 1 } { c } ( \frac { \partial E } { \partial t } + J )$ ; confidence 0.575

223. e120230176.png ; $E ( L ) = E ^ { \mathscr { L } } ( L ) \omega ^ { \mathscr { K } } \otimes \Delta$ ; confidence 0.060

224. f12004029.png ; $f ^ { \Delta \langle \varphi \rangle } : W \rightarrow \overline { R }$ ; confidence 0.612

225. f13019024.png ; $( \frac { d } { d x } ) ^ { 2 } P _ { N } u ( x ) = \sum _ { k } ( i k ) ^ { 2 } a _ { k } e _ { i k x }$ ; confidence 0.491

226. f110160129.png ; $\& \{ \exists x _ { n } + 1 \psi _ { n } ^ { l } \overline { a } \alpha : a \in A \}$ ; confidence 0.055

227. f12021062.png ; $\lambda _ { 1 } - \lambda _ { i } , \ldots , \lambda _ { i - 1 } - \lambda _ { i }$ ; confidence 0.568

228. f13029054.png ; $\bigotimes _ { j \in J } T ( u _ { j } ) \leq T ( \bigotimes _ { j \in J } u _ { j } )$ ; confidence 0.894

229. g13003096.png ; $\{ x ^ { i } , \text { vp } 1 / x ^ { j } , \delta ^ { ( k ) } ( x ) : i , j , k \in N _ { 0 } \}$ ; confidence 0.427

230. g13006091.png ; $| \lambda - \alpha _ { i } , i | = r _ { i } ( A ) \text { for each } 1 \leq i \leq n$ ; confidence 0.448

231. g12004010.png ; $\alpha \in Z _ { + } ^ { n } , | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.896

232. g1200502.png ; $\psi ( x , y , t ) : R ^ { n } \times \Omega \times R ^ { + } \rightarrow R ^ { N }$ ; confidence 0.992

233. h11001010.png ; $\sum _ { n < x } f ( n ) = c x ^ { 1 + i x } \cdot L ( \operatorname { log } x ) + o ( x )$ ; confidence 0.360

234. h12012078.png ; $\phi ^ { \prime } = \phi \sum _ { i = 0 } ^ { \infty } ( - 1 ) ^ { i } ( t \phi ) ^ { i }$ ; confidence 0.676

235. h04807042.png ; $S = \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } ( X _ { i } - X ) ( X _ { i } - X ) ^ { \prime }$ ; confidence 0.642

236. h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751

237. i130060167.png ; $| F ( 2 x ) | \leq c \sigma ( x ) , | A ( x , y ) | \leq c \sigma ( \frac { x + y } { 2 } )$ ; confidence 0.509

238. i12008071.png ; $= \sum _ { S _ { 1 } = \pm 1 } \cdots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N }$ ; confidence 0.359

239. i1200805.png ; $H = - \sum _ { i < j = 1 } ^ { N } J _ { i j } S _ { i } S _ { j } - H \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.707

240. i13009062.png ; $\Gamma ^ { p m } \mapsto \gamma \operatorname { mod } \Gamma ^ { p ^ { n } }$ ; confidence 0.519

241. j13007081.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega$ ; confidence 0.916

242. k13001015.png ; $\langle D \rangle = \sum _ { S } A ^ { T ( s ) } ( - A ^ { 2 } - A ^ { - 2 } ) ^ { | S D | - 1 }$ ; confidence 0.165

243. k12005048.png ; $\lambda = \operatorname { sup } \{ t \in Q : H + t ( K _ { X } + B ) \text { is } f$ ; confidence 0.511

244. k13006017.png ; $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right)$ ; confidence 0.434

245. l06002015.png ; $L ( x ) = - \int _ { 0 } ^ { x } \operatorname { ln } \operatorname { cos } t d t$ ; confidence 0.969

246. l12012079.png ; $K _ { tot S } = \cap _ { p \in S } \prod _ { \sigma \in G ( K ) } K _ { p } ^ { \sigma }$ ; confidence 0.268

247. l12017063.png ; $P = \langle \alpha _ { 1 } , \dots , a _ { g } | R _ { 1 } , \dots , R _ { N } \rangle$ ; confidence 0.152

248. m12003092.png ; $\sum _ { i = 1 } ^ { n } \eta ( \vec { x } _ { i } , r _ { i } ) \vec { x } _ { i } = \vec { 0 }$ ; confidence 0.523

249. m13002014.png ; $\| \phi \| = 1 - \frac { m } { r } + O ( r ^ { - 2 } ) , \| D _ { A } \phi \| = O ( r ^ { - 2 } )$ ; confidence 0.991

250. m12012067.png ; $Q _ { s } ( R ) = \{ q \in Q ( R ) : q B \subseteq \text { Rfor some0 } \neq B < R \}$ ; confidence 0.106

251. m120130109.png ; $\frac { d L } { d t } = \gamma L ( F - \xi ) , \quad \xi = \frac { \nu } { \gamma }$ ; confidence 0.983

252. m1301408.png ; $\int _ { S ( x , r ) } f ( y ) d \sigma _ { r } ( y ) = f ( x ) , x \in R ^ { n } , r \in R ^ { + }$ ; confidence 0.902

253. n13002019.png ; $A _ { \varepsilon } = \{ x : \{ x \} \times Y \subset O _ { \varepsilon } \}$ ; confidence 0.744

254. n1200804.png ; $\operatorname { lim } _ { x \rightarrow \infty } \mu _ { N } ( E ) = \mu ( E )$ ; confidence 0.546

255. n06663093.png ; $f \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } , \ldots , M _ { n } ; R ^ { n } )$ ; confidence 0.127

256. n12011052.png ; $B _ { \alpha } ( x ^ { * } ) = \{ x \in R ^ { n } : \xi _ { x ^ { * } } ( x ) \geq \alpha \}$ ; confidence 0.332

257. n067520388.png ; $\operatorname { det } \| \partial \xi _ { i } / \partial y _ { j } \| \neq 0$ ; confidence 0.969

258. o13001066.png ; $i _ { 1 } : H ^ { 1 } ( D ^ { \prime } R ) \rightarrow L ^ { 2 } ( D _ { R } ^ { \prime } )$ ; confidence 0.903

259. o1300809.png ; $x \in R _ { + } , \varphi _ { m } ( 0 , k ) = 0 , \varphi _ { m } ^ { \prime } ( 0 , k ) = 1$ ; confidence 0.488

260. o13008013.png ; $\int _ { 0 } ^ { \infty } h ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0 , \forall k > 0$ ; confidence 0.989

261. p0754808.png ; $( p \supset r ) \supset ( ( q \supset r ) \supset ( ( p \vee q ) \supset r ) )$ ; confidence 0.854

262. r13004042.png ; $0 = \mu _ { 1 } ( \Omega ) < \mu _ { 2 } ( \Omega ) \leq \mu _ { 3 } ( \Omega ) \leq$ ; confidence 0.993

263. r13014022.png ; $\operatorname { lim } _ { x \rightarrow \infty } \| T ^ { x } \| ^ { 1 / x } = 0$ ; confidence 0.569

264. s13036023.png ; $Y _ { t } = B _ { t } - \operatorname { min } _ { 0 \leq s \leq t } B _ { s } \wedge 0$ ; confidence 0.817

265. s12020093.png ; $\{ D ^ { \lambda } : \lambda \text { ap\square regular partition of } n$ ; confidence 0.500

266. s13050010.png ; $\left( \begin{array} { c } { [ n ] } \\ { ( n + 1 ) / 2 } \end{array} \right)$ ; confidence 0.581

267. s1305009.png ; $\left( \begin{array} { c } { [ n ] } \\ { ( n - 1 ) / 2 } \end{array} \right)$ ; confidence 0.724

268. s12023045.png ; $\operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } T T ^ { \prime } \}$ ; confidence 0.969

269. s12024018.png ; $H * ( X , x _ { 0 } ; G ) \approx \prod _ { 1 } ^ { \infty } H * ( X _ { i } , x _ { i 0 } ; G )$ ; confidence 0.124

270. s12032090.png ; $\langle t ^ { * } ( n ^ { * } ) , m \} = ( - 1 ) ^ { p ( t ) p ( n ^ { * } ) } | n ^ { * } , t ( m ) \}$ ; confidence 0.283

271. t130050107.png ; $A _ { k } \equiv ( a _ { i , j } ^ { ( k ) } ) _ { i , j = 1 } ^ { \operatorname { dim } X }$ ; confidence 0.075

272. t12003013.png ; $\mu ( z ) = k \frac { \overline { \varphi } ( z ) } { | \varphi ( z ) | } , 0 < k < 1$ ; confidence 0.933

273. t12006095.png ; $E _ { atom } ^ { TF } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { atom } ^ { TF } ( \lambda , 1 )$ ; confidence 0.406

274. t12013019.png ; $\Psi _ { 1 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } x _ { i } z ^ { i } } S _ { 1 } \chi ( z ) =$ ; confidence 0.942

275. t12013062.png ; $y _ { 1 } , \dots , y _ { p } , \dots ; x _ { p } - y _ { p } , x _ { 2 } p - y _ { 2 } p , \dots )$ ; confidence 0.067

276. t12014074.png ; $\operatorname { dist } _ { L } \infty ( \overline { u } , H ^ { \infty } ) < 1$ ; confidence 0.787

277. v120020191.png ; $\operatorname { deg } ( F , \overline { D } \square ^ { n + 1 } , \theta ) = k$ ; confidence 0.871

278. v13011023.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \operatorname { log } ( z - z _ { j } )$ ; confidence 0.995

279. w12003036.png ; $\overline { \cup _ { \alpha < \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ ; confidence 0.787

280. w12011028.png ; $( \alpha ^ { w } u , v ) = \int \int \alpha ( x , \xi ) H ( u , v ) ( x , \xi ) d x d \xi$ ; confidence 0.396

281. w130080202.png ; $\kappa \partial _ { S } F + H _ { S } ( \frac { \delta F } { \delta u } , u , t ) = 0$ ; confidence 0.614

282. w130080105.png ; $\partial _ { n } F = ( 1 / 2 \pi i n ) \operatorname { Res } _ { 0 } \xi ^ { - n } d S$ ; confidence 0.423

283. w13011035.png ; $\frac { 1 } { N } \sum _ { x = 1 } ^ { N } \prod _ { i = 1 } ^ { H } f _ { i } \circ T ^ { i n }$ ; confidence 0.326

284. w1100608.png ; $E ( B ( t ) ) \equiv 0 , \quad E ( B ( t ) . B ( s ) ) = \operatorname { min } ( t , s )$ ; confidence 0.489

285. x120010106.png ; $\Phi _ { \sigma } = \{ q \in Q : q x ^ { \sigma } = x q \text { for all } x \in R \}$ ; confidence 0.424

286. x12003011.png ; $X f ( 1 ) = X f ( \theta , p ) = \int _ { - \infty } ^ { \infty } f ( x + t \theta ) d t$ ; confidence 0.912

287. z13001071.png ; $z ( z - \operatorname { cos } w ) / ( z ^ { 2 } - 2 z \operatorname { cos } w + 1 )$ ; confidence 0.999

288. z1300106.png ; $R = \operatorname { limsup } _ { N \rightarrow \infty } | x ( n ) | ^ { 1 / n }$ ; confidence 0.692

289. z1301302.png ; $x _ { 1 } = r \operatorname { sin } \theta \operatorname { cos } \varphi$ ; confidence 0.964

290. a130240315.png ; $SS _ { e } = y ^ { \prime } ( I _ { n } - X ( X ^ { \prime } X ) ^ { - 1 } X ^ { \prime } ) y$ ; confidence 0.596

291. a12013051.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } H ( \theta _ { n - 1 } , Y _ { n } )$ ; confidence 0.990

292. a12013010.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } H ( \theta _ { n - 1 } , X _ { n } )$ ; confidence 0.964

293. a120160161.png ; $y _ { i t } = \alpha y _ { i , t - 1 } + \sum _ { j = 1 } ^ { N } k _ { j t } t _ { i j } x _ { i t }$ ; confidence 0.108

294. a12020071.png ; $T x _ { j } = t _ { j } x _ { j } \text { for } x ; \in X _ { j } \quad ( j = 1 , \dots , n )$ ; confidence 0.101

295. b1200203.png ; $\Gamma _ { N } ( t ) = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } 1 _ { [ 0 , t ] } ( U _ { i } )$ ; confidence 0.567

296. b1200205.png ; $\alpha _ { N } ( t ) = n ^ { 1 / 2 } ( \Gamma _ { N } ( t ) - t ) , \quad 0 \leq t \leq 1$ ; confidence 0.409

297. b1300305.png ; $\{ u x \{ v y w \} \} - \{ v y \{ u x w \} \} = \{ \{ u x v \} y w \} - \{ v \{ x u y \} w \}$ ; confidence 0.909

298. b13007032.png ; $BS ( 1 , n ) = \langle \alpha , b | \alpha ^ { - 1 } b \alpha = b ^ { n } \rangle$ ; confidence 0.435

299. b12009032.png ; $\frac { d f } { f } = \frac { d \xi } { \xi } - i \alpha \frac { d \tau } { \tau }$ ; confidence 0.855

300. b110220213.png ; $\operatorname { Ext } _ { M H _ { P } ^ { + } } ( R ( 0 ) , H _ { B } ^ { i } ( X ) , R ( j ) )$ ; confidence 0.068

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/9. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/9&oldid=44419