User:Maximilian Janisch/latexlist/latex/NoNroff/1
List
1. ; $\left. \begin{array} { l } { \frac { d } { d t } \left( \begin{array} { c } { u } \\ { v } \end{array} \right) + \left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right) \left( \begin{array} { c } { u } \\ { v } \end{array} \right) = \left( \begin{array} { c } { 0 } \\ { f ( t ) } \end{array} \right) , \quad t \in [ 0 , T ] } \\ { \left( \begin{array} { c } { u ( 0 ) } \\ { v ( 0 ) } \end{array} \right) = \left( \begin{array} { c } { u _ { 0 } } \\ { u _ { 1 } } \end{array} \right) } \end{array} \right.$ ; confidence 0.315
2. ; $\alpha y = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { i } & { 0 } \\ { 0 } & { - i } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { c c } { 0 } & { \sigma y } \\ { \sigma y } & { 0 } \end{array} \right) , \alpha _ { z } = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } \\ { 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { c c } { 0 } & { \sigma _ { z } } \\ { \sigma _ { z } } & { 0 } \end{array} \right)$ ; confidence 0.089
3. ; $\lambda _ { 3 } = \left( \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 4 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 5 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 6 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \\ { 0 } & { 1 } & { 0 } \end{array} \right)$ ; confidence 0.458
4. ; $= \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \sum _ { | \alpha | + \beta = n - 1 } ( \prod _ { j = 0 } ^ { m } \frac { \langle \rho ^ { \prime } ( \xi ) , z - p _ { j } \rangle } { \langle \rho ^ { \prime } ( \xi ) , \xi - p _ { j } \rangle } ) \times \times \frac { f ( \xi ) \partial \rho ( \xi ) \wedge ( \overline { \partial } \partial \rho ( \xi ) ) ^ { n - 1 } } { \langle \rho ^ { \prime } ( \xi ) , \xi - p \rangle ^ { \alpha } \langle \rho ^ { \prime } ( \xi ) , \xi - z \rangle ^ { \beta + 1 } }$ ; confidence 0.071
5. ; $J ( f ) = \left\| \begin{array} { c c c c c c } { a } & { 1 } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { \cdot } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { . } & { 1 } \\ { 0 } & { \square } & { \square } & { \square } & { \square } & { a } \end{array} \right\|$ ; confidence 0.082
6. ; $\left[ \begin{array} { c c } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i } ^ { k } + 1 , j } \\ { x _ { i , j + 1 } ^ { v } } \end{array} \right] = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i j } ^ { k } } \\ { x _ { i j } ^ { y } } \end{array} \right] + \left[ \begin{array} { c } { B _ { 1 } } \\ { B _ { 2 } } \end{array} \right] u _ { j }$ ; confidence 0.133
7. ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
8. ; $\tau ( \varphi ) ^ { \alpha } ( x ) = g ^ { i j } ( x ) ( \frac { \partial ^ { 2 } \varphi ^ { \alpha } } { \partial x ^ { i } \partial x ^ { j } } - \square ^ { M } \Gamma _ { i j } ^ { k } ( x ) \frac { \partial \varphi ^ { \alpha } } { \partial x ^ { k } } + + \square ^ { N } \Gamma _ { \beta \gamma } ^ { \alpha } ( \varphi ( x ) ) \frac { \partial \varphi \beta } { \partial x ^ { i } } \frac { \partial \varphi ^ { \gamma } } { \partial x ^ { j } } )$ ; confidence 0.384
9. ; $\Delta = \frac { 1 } { \mathfrak { c } 0 } \left( \begin{array} { c c c } { \mathfrak { c } ^ { 2 } - \mathfrak { c } _ { 1 } ^ { 2 } } & { \square } & { \mathfrak { c } _ { 1 } \mathfrak { w } - \mathfrak { c } _ { 1 } \mathfrak { c } _ { 2 } } \\ { \mathfrak { c } _ { 1 } \mathfrak { c } _ { 0 } - \mathfrak { c } _ { 1 } \mathfrak { c } _ { 2 } } & { \square } & { \mathfrak { c } _ { 0 } ^ { 2 } - \mathfrak { c } _ { 2 } ^ { 2 } } \end{array} \right)$ ; confidence 0.064
10. ; $\left( \begin{array} { c c c c } { 1 } & { 2 } & { 3 } & { 4 } \\ { 5 } & { 6 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 4 } & { 2 } & { 1 } & { 3 } \\ { 6 } & { 5 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) \neq$ ; confidence 0.635
11. ; $\left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 5 } & { \square } & { \square } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 8 } & { 4 } & { 1 } & { 3 } \\ { 7 } & { 6 } & { 5 } & { \square } \\ { 2 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right)$ ; confidence 0.460
12. ; $\left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 2 } & { 3 } & { 9 } & { 6 } \\ { 4 } & { 1 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right)$ ; confidence 0.519
13. ; $\left. \begin{array}{l}{ \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = \sum _ { i , j = 1 } ^ { m } \frac { \partial } { \partial x _ { i } } \{ \alpha _ { j } , ( x ) \frac { \partial u } { \partial x _ { j } } \} + c ( x ) u + f ( x , t ) }\\{ ( x , t ) \in \Omega \times [ 0 , T ] }\\{ u ( x , 0 ) = u _ { 0 } ( x ) , \frac { \partial u } { \partial t } ( x , 0 ) = u _ { 1 } ( x ) , x \in \Omega }\end{array} \right.$ ; confidence 0.050
14. ; $\left. \begin{array} { c c c c c } { \square } & { \square } & { C ( S ) } & { \square } & { \square } \\ { \square } & { \swarrow } & { \square } & { \searrow } & { \square } \\ { Z } & { \square } & { \downarrow } & { \square } & { S } \\ { \square } & { \searrow } & { \square } & { \swarrow } & { \square } \\ { \square } & { \square } & { O } & { \square } & { \square } \end{array} \right.$ ; confidence 0.059
15. ; $N _ { 1 } = \left\| \begin{array} { c c c c c } { L ( d _ { q + 1 } ) } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { . } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { L ( d _ { n } ) } \end{array} \right\|$ ; confidence 0.330
16. ; $\frac { d C _ { j } } { d x } ( x _ { k } ) = \left\{ \begin{array} { l l } { \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = 0 } \\ { - \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = N } \\ { - \frac { x _ { j } } { 2 ( 1 - x _ { j } ^ { 2 } ) } } & { \text { for } j = k , 0 < j < N } \\ { ( - 1 ) ^ { j + k } \frac { \tau _ { k } } { \tau _ { j } ( x _ { k } - x _ { j } ) } } & { \text { for } j \neq k } \end{array} \right.$ ; confidence 0.518
17. ; $J = \left\| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { J ( e _ { i } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right\|$ ; confidence 0.252
18. ; $\left. \begin{array} { l l l l l l l l l } { 1 } & { 2 } & { 3 } & { 4 } & { } & { 9 } & { 2 } & { 3 } & { 6 } \\ { 5 } & { 6 } & { 7 } & { \square } & { \text { and } } & { 7 } & { 1 } & { 4 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } & { } & { 5 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } & { } & { 8 } & { \square } & { \square } \end{array} \right.$ ; confidence 0.233
19. ; $\alpha _ { N } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) ^ { 2 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 } , \quad b _ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 }$ ; confidence 0.107
20. ; $\left( \begin{array} { c c c c } { h ( x _ { 1 } , y _ { 1 } ) } & { h ( x _ { 1 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 1 } , y _ { n } ) } \\ { h ( x _ { 2 } , y _ { 1 } ) } & { h ( x _ { 2 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 2 } , y _ { n } ) } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { h ( x _ { n } , y _ { 1 } ) } & { h ( x _ { n } , y _ { 2 } ) } & { \dots } & { h ( x _ { n } , y _ { n } ) } \end{array} \right)$ ; confidence 0.609
21. ; $\left. \begin{array}{l}{ \Phi ^ { + } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + ( 1 - \frac { \beta } { 2 \pi } ) \phi ( t _ { 0 } ) }\\{ \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { 2 \pi i } \int \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { \beta } { 2 \pi } \phi ( t _ { 0 } ) , 0 \leq \beta \leq 2 \pi }\end{array} \right.$ ; confidence 0.166
22. ; $\times [ \frac { \operatorname { sin } \frac { \pi \mu } { 2 } } { \operatorname { cosh } \frac { \pi \tau } { 2 } } \operatorname { Re } J _ { i \tau } ( x ) - \frac { \operatorname { cos } \frac { \pi \mu } { 2 } } { \operatorname { sinh } \frac { \pi \tau } { 2 } } \operatorname { Im } J _ { i \tau } ( x ) ] , f ( x ) = \frac { 2 ^ { - \mu } } { \pi ^ { 2 } x } x$ ; confidence 0.660
23. ; $\frac { m } { 1 + \alpha ^ { 2 } } \{ \int _ { 0 } ^ { z } \frac { p _ { 1 } ( s ) - p _ { 0 } ( s ) } { s ^ { 1 - \frac { m } { 1 + \alpha i } } } e ^ { \frac { m } { 1 + \alpha ^ { 2 } } \int _ { 0 } ^ { s } \frac { p _ { 0 } ( t ) - 1 } { t } d t } d s + \frac { 1 + \alpha ^ { 2 } } { m } z ^ { \frac { m } { 1 + \alpha i } } e ^ { \frac { m } { 1 + \alpha ^ { 2 } } } \int _ { 0 } ^ { z } \frac { p _ { 0 } ( t ) - 1 } { t } d t$ ; confidence 0.115
24. ; $M _ { n } ( z ) = \left( \begin{array} { c c c } { \langle f _ { 0 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { 0 } , f _ { n } \rangle } \\ { \vdots } & { \square } & { \vdots } \\ { \langle f _ { n - 1 } , f _ { 0 } \rangle } & { \dots } & { \langle f _ { n - 1 } , f _ { n } \rangle } \\ { f _ { 0 } ( z ) } & { \dots } & { f _ { n } ( z ) } \end{array} \right)$ ; confidence 0.156
25. ; $\Delta \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) \otimes \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right)$ ; confidence 0.279
26. ; $m = \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) + \left( \begin{array} { c } { \alpha _ { k } - 1 } \\ { k - 1 } \end{array} \right) + \ldots + \left( \begin{array} { c } { \alpha _ { 2 } } \\ { 2 } \end{array} \right) + \left( \begin{array} { c } { \alpha _ { 1 } } \\ { 1 } \end{array} \right)$ ; confidence 0.307
27. ; $\left( \begin{array} { l } { n } \\ { 0 } \end{array} \right) < \ldots < \left( \begin{array} { c } { n } \\ { \lfloor n / 2 \rfloor } \end{array} \right) = \left( \begin{array} { c } { n } \\ { \lceil n / 2 \rceil } \end{array} \right) > \ldots > \left( \begin{array} { l } { n } \\ { n } \end{array} \right)$ ; confidence 0.251
28. ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
29. ; $\left\{ \begin{array} { l } { x _ { 1 } ^ { 3 } + \sum _ { i + j + k \leq 2 } a _ { j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0 } \\ { x _ { 2 } ^ { 3 } + \sum _ { i + j + k \leq 2 } b _ { j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0 } \\ { x _ { 3 } ^ { 3 } + \sum _ { i + j + k \leq 2 } c _ { i j k } x _ { 1 } ^ { i } x _ { 2 } ^ { j } x _ { 3 } ^ { k } = 0 } \end{array} \right.$ ; confidence 0.094
30. ; $\left.\begin{array} { r l } { \Phi ^ { + } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \\ { \Phi ^ { - } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \end{array} \right\}$ ; confidence 0.187
31. ; $\lambda _ { 7 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - i } \\ { 0 } & { i } & { 0 } \end{array} \right) , \lambda _ { 8 } = \left( \begin{array} { c c c } { \frac { 1 } { \sqrt { 3 } } } & { 0 } & { 0 } \\ { 0 } & { \frac { 1 } { \sqrt { 3 } } } & { 0 } \\ { 0 } & { 0 } & { \frac { - 2 } { \sqrt { 3 } } } \end{array} \right)$ ; confidence 0.724
32. ; $\frac { 1 } { \operatorname { sin } ^ { 2 } \vartheta } \cdot \frac { \partial ^ { 2 } Y } { \partial \varphi ^ { 2 } } + \frac { 1 } { \operatorname { sin } \vartheta } \cdot \frac { \partial } { \partial \vartheta } ( \operatorname { sin } \vartheta \cdot \frac { \partial Y } { \partial \vartheta } ) +$ ; confidence 0.972
33. ; $[ u , v ] \equiv \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } \frac { \partial ^ { 2 } v } { \partial y ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } \frac { \partial ^ { 2 } v } { \partial x ^ { 2 } } - 2 \frac { \partial ^ { 2 } u } { \partial x \partial y } \frac { \partial ^ { 2 } v } { \partial x \partial y }$ ; confidence 0.995
34. ; $\left. \begin{array} { l } { p _ { t } ( \alpha , t ) + p _ { \alpha } ( \alpha , t ) + \mu ( \alpha , S ( t ) ) p ( \alpha , t ) = 0 } \\ { p ( 0 , t ) = \int ^ { + \infty } \beta ( \sigma , s ( t ) ) p ( \sigma , t ) d \sigma } \\ { p ( \alpha , 0 ) = p 0 } \\ { S ( t ) = \int \gamma ( \sigma ) p ( \sigma , t ) d \sigma } \end{array} \right.$ ; confidence 0.169
35. ; $L = \left( \begin{array} { c c c c c } { m _ { 1 } } & { m _ { 2 } } & { \ldots } & { \ldots } & { m _ { k } } \\ { p _ { 1 } } & { 0 } & { \ldots } & { \ldots } & { 0 } \\ { 0 } & { p _ { 2 } } & { 0 } & { \ldots } & { 0 } \\ { \vdots } & { \square } & { \ddots } & { \square } & { \vdots } \\ { 0 } & { \ldots } & { 0 } & { p _ { k - 1 } } & { 0 } \end{array} \right)$ ; confidence 0.442
36. ; $u = \left\{ \begin{array} { c c } { \overline { u } } & { \text { for } \frac { i T } { k } \leq t < ( i + \alpha ) \frac { T } { k } } \\ { } & { 0 \leq i \leq k - 1 } \\ { 0 } & { \text { for } ( i + \alpha ) \frac { T } { k } \leq t \leq ( i + 1 ) \frac { T } { k } } \\ { } & { \text { and fort } = T ; 0 \leq i \leq k - 1 } \end{array} \right.$ ; confidence 0.115
37. ; $= \left( \begin{array} { c c } { \frac { d A ( t ) ^ { 1 / 2 } } { d t } A ( t ) ^ { - 1 / 2 } } & { i A ( t ) ^ { 1 / 2 } } \\ { i A ( t ) ^ { 1 / 2 } } & { 0 } \end{array} \right) \left( \begin{array} { c } { v _ { 0 } } \\ { v _ { 1 } } \end{array} \right) + \left( \begin{array} { c } { 0 } \\ { f ( t ) } \end{array} \right) , t \in [ 0 , T ]$ ; confidence 0.535
38. ; $L [ \Lambda _ { n } ( \theta ) | P _ { n , \theta } ] \Rightarrow N ( - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h , h ^ { \prime } \Gamma ( \theta ) h ) , L [ \Lambda _ { n } ( \theta ) | P _ { n , \theta _ { n } } ] \Rightarrow N ( \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h , h ^ { \prime } \Gamma ( \theta ) h )$ ; confidence 0.889
39. ; $\left. \begin{array}{l}{ U _ { 0 } ^ { ( k ) } ( x ) = 0 }\\{ U _ { 1 } ^ { ( k ) } ( x ) = 1 }\\{ U _ { n } ^ { ( k ) } ( x ) = \sum _ { j = 1 } ^ { n } x ^ { k - j } U _ { n - j } ^ { ( k ) } ( x ) , \quad n = 2 , \ldots , k }\\{ U _ { n } ^ { ( k ) } ( x ) = \sum _ { j = 1 } ^ { k } x ^ { k - j } U _ { n - j } ^ { ( k ) } ( x ) }\\{ n = k + 1 , k + 2 , \ldots }\end{array} \right.$ ; confidence 0.136
40. ; $B _ { i } ( x _ { 1 } , x _ { 2 } , u , \frac { \partial u } { \partial x _ { 1 } } , \frac { \partial u } { \partial x _ { 2 } } : x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } ) = 0$ ; confidence 0.851
41. ; $Q _ { 2 n } ( z ) = \frac { 1 } { H _ { 2 n } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c _ { - 2 n } } & { \cdots } & { c _ { - 1 } } & { z ^ { - n } } \\ { \vdots } & { \square } & { \vdots } & { \vdots } \\ { c _ { - 1 } } & { \cdots } & { c _ { 2 n - 2 } } & { z ^ { n - 1 } } \\ { 0 } & { \cdots } & { c _ { 2 n - 1 } } & { z ^ { n } e n d } \end{array} \right|$ ; confidence 0.239
42. ; $( LD ) v ^ { * } = \left\{ \begin{array} { c l } { \operatorname { max } } & { q } \\ { s.t. } & { q \leq c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } ) } \\ { } & { \forall k \in P } \\ { 0 \leq } & { c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } A _ { 1 } x ^ { ( k ) } , \forall k \in R } \\ { u _ { 1 } \geq 0 } \end{array} \right.$ ; confidence 0.111
43. ; $Q _ { 2 n + 1 } ( z ) = \frac { - 1 } { H _ { 2 n + 1 } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c - 2 n - 1 } & { \cdots } & { c - 1 } & { z ^ { - n - 1 } } \\ { \vdots } & { \square } & { \vdots } & { \vdots } \\ { c - 1 } & { \cdots } & { c _ { 2 n - 1 } } & { z ^ { n - 1 } } \\ { 0 } & { \cdots } & { c _ { 2 n } } & { z ^ { n } e n d } \end{array} \right|$ ; confidence 0.116
44. ; $\left[ \begin{array} { l } { Y _ { 1 } } \\ { Y _ { 2 } } \end{array} \right] = \left[ \begin{array} { c c } { \frac { 1 } { 1 - P C } } & { \frac { P } { 1 - P C } } \\ { \frac { C } { 1 - P C } } & { \frac { 1 } { 1 - P C } } \end{array} \right] \left[ \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right]$ ; confidence 0.295
45. ; $X = \left( \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right) , M = \left( \begin{array} { c } { M _ { 1 } } \\ { M _ { 2 } } \end{array} \right) , \Sigma = \left( \begin{array} { l l } { \Sigma _ { 11 } } & { \Sigma _ { 12 } } \\ { \Sigma _ { 21 } } & { \Sigma _ { 22 } } \end{array} \right)$ ; confidence 0.335
46. ; $\frac { k } { k + 1 } \frac { \operatorname { log } a _ { \mathfrak { W } } } { \operatorname { log } m } \leq \frac { \operatorname { log } a _ { \mathfrak { N } } } { \operatorname { log } n } \leq \frac { k + 1 } { k } \frac { \operatorname { log } a _ { \mathfrak { N } } } { \operatorname { log } m }$ ; confidence 0.050
47. ; $= \{ \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in SL ( 2 , Z ) : \left( \begin{array} { c c } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } n ) \}$ ; confidence 0.062
48. ; $y = \left\{ \begin{array} { l l } { ( \frac { c } { \alpha - x } ) ^ { k + 1 } } & { \text { for } x \in ( - \infty , \alpha - c ] } \\ { 1 } & { \text { for } x \in [ \alpha - c , \alpha - c + b ] } \\ { ( \frac { b - c } { x - \alpha } ) ^ { k + 1 } } & { \text { for } x \in [ \alpha - c + b , \infty ] } \end{array} \right.$ ; confidence 0.297
49. ; $= \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } ( \overline { \zeta _ { j } } - \overline { z _ { j } } ) d \overline { \zeta _ { 1 } } \wedge \ldots \wedge [ d \overline { \zeta _ { j } } ] \wedge \ldots \wedge d \overline { \zeta _ { n } } , \omega ( \zeta ) = d \zeta _ { 1 } \wedge \cdots \wedge d \zeta _ { n }$ ; confidence 0.388
50. ; $u ( z _ { 1 } , z _ { 2 } ) = \left\{ \begin{array} { c l } { 0 } & { \text { if } | z _ { 1 } | ^ { 2 } , | z _ { 2 } | ^ { 2 } < \frac { 1 } { 2 } } \\ { \operatorname { max } \{ ( | z _ { 1 } | ^ { 2 } - \frac { 1 } { 2 } ) ^ { 2 } , } & { ( | z _ { 2 } | ^ { 2 } - \frac { 1 } { 2 } ) ^ { 2 } \} } \\ { \text { elsewhere on } D } \end{array} \right.$ ; confidence 0.287
51. ; $= \frac { \operatorname { exp } ( - \frac { ( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) } { 2 m k _ { B } T } ) d p _ { x } d p _ { y } d p _ { z } } { \int \int \int _ { - \infty } ^ { \infty } \operatorname { exp } ( \frac { - ( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) } { 2 m k _ { B } T } ) d p _ { x } d p _ { y } d p _ { z } }$ ; confidence 0.216
52. ; $\left( \begin{array} { c } { 0 } \\ { G _ { i + 1 } } \end{array} \right) = Z _ { i } G _ { i } \Theta _ { i } \left( \begin{array} { c c } { 1 } & { 0 } \\ { 0 } & { 0 } \end{array} \right) + G _ { i } \Theta _ { i } \left( \begin{array} { c c } { 0 } & { 0 } \\ { 0 } & { I _ { p + q - 1 } } \end{array} \right)$ ; confidence 0.337
53. ; $\left. \begin{array} { l } { \partial _ { i } ^ { 2 } = 0 } \\ { \partial _ { i } \partial _ { j } = \partial _ { j } \partial _ { i } \text { if } | i - j | > 1 } \\ { \partial _ { i } \partial _ { i + 1 } \partial _ { i } = \partial _ { i + 1 } \partial _ { i } \partial _ { i + 1 } } \end{array} \right.$ ; confidence 0.719
54. ; $\frac { d ^ { 2 } C _ { j } } { d x ^ { 2 } } ( x _ { i } ) = \left\{ \begin{array} { l l } { - \frac { 2 N ^ { 2 } + 1 } { 6 } } & { \text { for } i = j } \\ { \frac { 1 } { 2 } \frac { ( - 1 ) ^ { i + j + 1 } } { \operatorname { sin } ^ { 2 } \frac { x _ { i } - x _ { j } } { 2 } } } & { \text { for } i \neq j } \end{array} \right.$ ; confidence 0.706
55. ; $P \equiv \left( \begin{array} { c c } { \operatorname { exp } ( \frac { J + H } { k _ { B } T } ) } & { \operatorname { exp } ( \frac { - J } { k _ { B } T } ) } \\ { \operatorname { exp } ( \frac { - J } { k _ { B } T } ) } & { \operatorname { exp } ( \frac { J - H } { k _ { B } T } ) } \end{array} \right)$ ; confidence 0.635
56. ; $\left. \begin{array} { l } { \operatorname { Re } ( \nabla p _ { 0 } + b ) = 0 } \\ { \Lambda _ { 1 } C ( \theta _ { r } ) ( \frac { \partial \theta _ { 0 } } { \partial t } + \nabla \theta _ { 0 } v _ { 0 } ) = \Delta \theta _ { 0 } } \\ { \operatorname { div } v _ { 0 } = 0 } \end{array} \right.$ ; confidence 0.567
57. ; $\sigma _ { 1 } = \frac { 1 } { i } ( A _ { 1 } - A _ { 1 } ^ { * } ) | _ { E } , \sigma _ { 2 } = \frac { 1 } { i } ( A _ { 2 } - A _ { 2 } ^ { * } ) | _ { E } , \gamma = \frac { 1 } { i } ( A _ { 1 } A _ { 2 } ^ { * } - A _ { 2 } A _ { 1 } ^ { * } ) | _ { E } , \tilde { \gamma } = \frac { 1 } { i } ( A _ { 2 } ^ { * } A _ { 1 } - A _ { 1 } ^ { * } A _ { 2 } ) | _ { E }$ ; confidence 0.751
58. ; $[ \partial _ { r r } + \frac { 2 } { r } \partial _ { r } + \frac { 1 } { r ^ { 2 } } \partial _ { \theta \theta } + \frac { \operatorname { ctan } \theta } { r ^ { 2 } } \partial _ { \theta } + \frac { 1 } { r ^ { 2 } \operatorname { sin } ^ { 2 } \theta } \partial _ { \varphi \varphi } ] H = 0$ ; confidence 0.318
59. ; $\left. \begin{array} { c } { \frac { \partial u } { \partial t } + \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u = f ( x , t ) } \\ { ( x , t ) \in \Omega \times [ 0 , T ] } \\ { u ( x , 0 ) = u _ { 0 } ( x ) , \quad x \in \Omega } \end{array} \right.$ ; confidence 0.387
60. ; $- \frac { 1 } { \langle \rho ^ { \prime } , \zeta \} ^ { N } } \sum _ { | \alpha | = 0 } ^ { m } \frac { ( | \alpha | + n - 1 ) ! } { \alpha _ { 1 } ! \ldots \alpha _ { N } ! } ( \frac { \rho ^ { \prime } ( \zeta ) } { \langle \rho ^ { \prime } , \zeta \rangle } ) ^ { \alpha } z ^ { \alpha } \sigma$ ; confidence 0.140
61. ; $\frac { m } { 1 + \alpha ^ { 2 } } \int _ { z } ^ { \xi } \frac { p _ { 0 } ( s ) - \alpha i } { s } d s \int _ { z } ^ { \xi } \frac { p _ { 1 } ( s ) - p _ { 0 } ( s ) } { s } \frac { \frac { m } { 1 + \alpha ^ { 2 } } \int _ { z } ^ { s } \frac { p _ { 0 } ( t ) - \alpha i } { t } d t } { t } d s - \frac { 1 + \alpha ^ { 2 } } { m } \}$ ; confidence 0.055
62. ; $( \exists x \varphi ( x ) ) = \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x \varphi } \end{array} \right) \text { and } ( \forall x \varphi ( x ) ) = \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x ( \neg \varphi ) } \end{array} \right)$ ; confidence 0.647
63. ; $\frac { \partial w _ { N } } { \partial t } = \{ H , w _ { N } \} _ { cl } \equiv \sum _ { i = 1 } ^ { N } ( \frac { \partial H } { \partial r _ { i } } \frac { \partial w _ { N } } { \partial p _ { i } } - \frac { \partial w _ { N } } { \partial r _ { i } } \frac { \partial H } { \partial p _ { i } } )$ ; confidence 0.810
64. ; $\partial _ { k } ( m ) = \left( \begin{array} { c } { \alpha _ { k } } \\ { k - 1 } \end{array} \right) + \left( \begin{array} { c } { \alpha _ { k } - 1 } \\ { k - 2 } \end{array} \right) + \ldots + \left( \begin{array} { c } { \alpha _ { 1 } } \\ { 0 } \end{array} \right)$ ; confidence 0.529
65. ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352
66. ; $\times G _ { p + 2 , q } ^ { m , n + 2 } \left( \begin{array} { c } { 1 - \mu + i \tau , 1 - \mu - i \tau , ( \alpha _ { p } ) } \\ { ( \beta _ { q } ) } \end{array} \right) , f ( x ) = \frac { 1 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.438
67. ; $c _ { m , n } = \left\{ \begin{array} { l l } { 2 ^ { 1 - n } ( \frac { n + k } { 4 e ( m + n + k ) } ) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } \geq \rho } \\ { \rho ^ { m } 2 ^ { 1 - n } ( \frac { 1 - \rho } { 4 } ) ^ { n + k } } & { \text { if } \frac { m } { m + n + k } < \rho } \end{array} \right.$ ; confidence 0.301
68. ; $= \left\{ \begin{array} { l l } { \sum _ { - n \leq i \leq - 1 } f ( i ) g ( i + n ) , } & { n = - m > 0 } \\ { - \sum _ { n \leq i \leq - 1 } f ( i - n ) g ( i ) , } & { n = - m < 0 } \\ { 0 , } & { \left\{ \begin{array} { l } { n + m \neq 0 } \\ { n = m = 0 } \end{array} \right.} \end{array} \right.$ ; confidence 0.261
69. ; $+ \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }$ ; confidence 0.940
70. ; $\alpha _ { X } = \left( \begin{array} { l l l l } { 0 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 1 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { l l } { 0 } & { \sigma _ { x } } \\ { \sigma _ { x } } & { 0 } \end{array} \right)$ ; confidence 0.193
71. ; $\Lambda = \left( \begin{array} { c c c c } { z ^ { k _ { 1 } } } & { 0 } & { \ldots } & { 0 } \\ { 0 } & { z ^ { k } 2 } & { \ldots } & { 0 } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { 0 } & { 0 } & { \ldots } & { z ^ { k _ { R } } } \end{array} \right) , k _ { 1 } , \ldots , k _ { N } \in Z$ ; confidence 0.145
72. ; $| \frac { \partial A ( x , y ) } { \partial x } + \frac { 1 } { 4 } q ( \frac { x + y } { 2 } ) | \leq c \sigma ( x ) \sigma ( \frac { x + y } { 2 } ) , | \frac { \partial A ( x , y ) } { \partial y } + \frac { 1 } { 4 } q ( \frac { x + y } { 2 } ) | \leq c \sigma ( x ) \sigma ( \frac { x + y } { 2 } )$ ; confidence 0.958
73. ; $C = \alpha _ { 12 } - \mu _ { 0 } \beta _ { 21 } \operatorname { cos } \theta + \mu _ { 0 } \beta _ { 31 } \operatorname { sin } \theta , D = \alpha _ { 11 } + \mu _ { 0 } \beta _ { 22 } \operatorname { cos } \theta - \mu _ { 0 } \beta _ { 32 } \operatorname { sin } \theta$ ; confidence 0.936
74. ; $\left\{ \begin{array} { l } { p t ( \alpha , t ) + p _ { x } ( \alpha , t ) + \mu ( \alpha ) p ( \alpha , t ) = 0 } \\ { p ( 0 , t ) = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) p ( \alpha , t ) d \alpha } \\ { p ( \alpha , 0 ) = p _ { 0 } ( \alpha ) \geq 0 } \end{array} \right.$ ; confidence 0.099
75. ; $\left. \begin{array}{l}{ N _ { * } ^ { 1 } = \frac { K _ { ( 1 ) } - \delta _ { ( 1 ) } K _ { ( 2 ) } } { 1 - \delta _ { ( 1 ) } \delta _ { ( 2 ) } } }\\{ N _ { * } ^ { 2 } = \frac { K _ { ( 2 ) } - \delta _ { ( 2 ) } K _ { ( 1 ) } } { 1 - \delta _ { ( 1 ) } \delta _ { ( 2 ) } } }\end{array} \right.$ ; confidence 0.545
76. ; $\frac { \partial } { \partial z } = \frac { 1 } { 2 } ( \frac { \partial } { \partial x } - i \frac { \partial } { \partial y } ) , \frac { \partial } { \partial z } = \frac { 1 } { 2 } ( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } )$ ; confidence 0.984
77. ; $\frac { 1 } { 2 \sqrt { 2 \pi } } \int _ { 0 } ^ { \infty } \int _ { 0 } ^ { \infty } \operatorname { exp } ( - \frac { 1 } { 2 } ( \frac { x u } { v } + \frac { x v } { u } + \frac { u v } { x } ) ) \times \times ( \frac { 1 } { x } + \frac { 1 } { u } + \frac { 1 } { v } ) f ( u ) g ( v ) d u d v$ ; confidence 0.341
78. ; $( \frac { \partial \phi } { \partial t } ) | _ { x _ { k } ^ { 0 } } = \frac { D \phi } { D t } , ( \frac { \partial \phi } { \partial t } ) | _ { x _ { i } } = \frac { \partial \phi } { \partial t } , ( \frac { \partial x _ { i } } { \partial t } ) | _ { x _ { k } ^ { 0 } } = v _ { i }$ ; confidence 0.340
79. ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316
80. ; $S \left( \begin{array} { c c } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { c c } { q ^ { 2 } \delta + ( 1 - q ^ { 2 } ) \alpha } & { - q ^ { 2 } \beta } \\ { - q ^ { 2 } \gamma } & { \alpha } \end{array} \right)$ ; confidence 0.875
81. ; $\left\{ \begin{array} { l l } { \alpha _ { i } \alpha _ { j } + \alpha _ { j } \alpha _ { i } = 0 } & { \text { fori, } j \in \{ x , y , z \} , i \neq j } \\ { \alpha _ { i } \beta + \beta \alpha _ { i } = 0 } & { \text { for } i , j \in \{ x , y , z \} } \end{array} \right.$ ; confidence 0.152
82. ; $= ( 2 \pi i ) ^ { 1 - n } \int _ { \Delta _ { N } } d t \int _ { S } ( F _ { N } f ) \times \times ( ( 1 - t _ { 2 } - \ldots - t _ { n } ) ( z , \zeta ) , \frac { t _ { 2 } } { \zeta _ { 2 } } ( z , \zeta ) , \ldots , \frac { t _ { n } } { \zeta _ { n } } ( z , \zeta ) ) \frac { d \zeta } { \zeta }$ ; confidence 0.073
83. ; $\left( \begin{array} { c c c c } { 1 } & { p _ { 0 } ^ { 1 } } & { \dots } & { p _ { 0 } ^ { k } } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { 1 } & { p _ { k } ^ { 1 } } & { \cdots } & { p _ { i k } ^ { k } } \end{array} \right) | _ { 1 \leq i _ { 0 } < \ldots < i _ { k } \leq n }$ ; confidence 0.059
84. ; $M = \left( \begin{array} { c c c } { 1 } & { - 1 } & { 0 } \\ { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { 1 } \end{array} \right) , \quad N = \left( \begin{array} { c c c c } { 1 } & { 1 } & { 1 } & { - 1 } \\ { 1 } & { 1 } & { - 1 } & { 1 } \\ { 1 } & { - 1 } & { 1 } & { 1 } \end{array} \right)$ ; confidence 0.981
85. ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m } \end{array} \right.$ ; confidence 0.804
86. ; $\frac { \partial u } { \partial t } = - 2 \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } ( \frac { 1 } { \sqrt { u } } ) + 6 u ^ { 2 } \frac { \partial } { \partial y } [ u ^ { - 1 } \partial ^ { - 1 } x \frac { \partial } { \partial y } ( \frac { 1 } { \sqrt { u } } ) ]$ ; confidence 0.957
87. ; $\Delta \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) = \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \otimes \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right)$ ; confidence 0.420
88. ; $\operatorname { Var } | W ^ { \alpha } ( t ) | \asymp \left\{ \begin{array} { l l } { t , } & { d = 1 } \\ { \frac { t ^ { 2 } } { \operatorname { log } ^ { 4 } t } , } & { d = 2 } \\ { \operatorname { tlog } t , } & { d = 3 } \\ { t , } & { d \geq 4 } \end{array} \right.$ ; confidence 0.128
89. ; $m = \frac { \operatorname { exp } ( \frac { H _ { eff } } { k _ { B } T } ) - \operatorname { exp } ( - \frac { H _ { eff } } { k _ { B } T } ) } { \operatorname { exp } ( \frac { H _ { eff } } { k _ { B } T } ) + \operatorname { exp } ( - \frac { H _ { eff } } { k _ { B } T } ) } =$ ; confidence 0.908
90. ; $\lambda _ { 1 } = \left( \begin{array} { l l l } { 0 } & { 1 } & { 0 } \\ { 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 2 } = \left( \begin{array} { c c c } { 0 } & { - i } & { 0 } \\ { i } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right)$ ; confidence 0.766
91. ; $\mathfrak { V } ^ { \prime \prime } = ( A _ { 1 } ^ { \prime \prime } , A _ { 2 } ^ { \prime \prime } , H ^ { \prime \prime } , \Phi ^ { \prime \prime } , E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma ^ { \prime \prime } , \tilde { \gamma } ^ { \prime \prime } )$ ; confidence 0.589
92. ; $E [ W ] _ { gated } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda b ^ { ( 2 ) } + r ( P + \rho ) } { 2 ( 1 - \rho ) } , E [ W ] _ { lim } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda b ^ { ( 2 ) } + r ( P + \rho ) + P \lambda \delta ^ { 2 } } { 2 ( 1 - \rho - P \lambda r ) }$ ; confidence 0.089
93. ; $\operatorname { max } _ { 1 \leq k \leq 4 } \left( \begin{array} { c } { \operatorname { max } } \\ { n + r - 1 } \\ { r } \end{array} \right) g ( k ) | \geq | g ( 0 ) | ( 2 e \left( \begin{array} { c } { n + r - 1 } \\ { r } \end{array} \right) ) ^ { - 1 / r }$ ; confidence 0.330
94. ; $\frac { \partial \vec { v } } { \partial t } + ( \vec { v } \nabla ) \vec { v } = - \frac { 1 } { \rho } \nabla P - \frac { 1 } { 4 \pi \rho } [ \vec { B } \times \operatorname { rot } \vec { B } ] , \frac { \partial s } { \partial t } + \vec { v } \nabla s = 0$ ; confidence 0.889
95. ; $A = \mu _ { 0 } \beta _ { 11 } + \alpha _ { 22 } \operatorname { cos } \theta - \alpha _ { 32 } \operatorname { sin } \theta , B = \alpha _ { 21 } \operatorname { cos } \theta - \alpha _ { 31 } \operatorname { sin } \theta - \mu _ { 0 } \beta _ { 12 }$ ; confidence 0.891
96. ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
97. ; $\left. \begin{array}{l}{ f _ { i + 1 / 2 } ^ { waf } = \frac { 1 } { \Delta x } \int _ { - \frac { 1 } { 2 } \Delta x } ^ { \frac { 1 } { 2 } \Delta x } f [ u _ { t + 1 / 2 } ( x , \frac { 1 } { 2 } \Delta t ) ] d x }\\{ - \frac { 1 } { 2 } \Delta x }\end{array} \right.$ ; confidence 0.090
98. ; $\geq \frac { n } { 4 N ^ { 2 } / 2 } \operatorname { exp } ( - 30 n ( \frac { 1 } { \operatorname { log } ( N / n ) } + \frac { 1 } { \operatorname { log } ( N / m ) } ) ) \times \times \times \operatorname { min } _ { l \leq n } | \sum _ { j = 1 } ^ { l } b _ { j }$ ; confidence 0.300
99. ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \rightarrow \frac { \int _ { - \infty } ^ { \infty } \alpha ^ { s ( x + \beta ) } e ^ { - \alpha ^ { s } } d N ( s ) } { \Gamma ( x + 1 ) \int _ { - \infty } ^ { \infty } \alpha ^ { s } ^ { \beta } e ^ { - \alpha ^ { s } } d N ( s ) }$ ; confidence 0.447
100. ; $\left\{ \begin{array} { l } { L _ { x } ^ { 2 } L _ { x x } + 2 L _ { x } L _ { y } L _ { x y } + L _ { y } ^ { 2 } L _ { y y } = 0 } \\ { L _ { x } ^ { 3 } L _ { x x x } + 3 L _ { x } ^ { 2 } L _ { y } L _ { x x y } + 3 L _ { x } L _ { y } ^ { 2 } L _ { x y } y + L _ { y } ^ { 3 } L _ { y y y } < 0 } \end{array} \right.$ ; confidence 0.474
101. ; $\left( \begin{array} { c c c c } { 0 } & { \square } & { \square } & { - a _ { 0 } } \\ { 1 } & { \ddots } & { \square } & { - a _ { 1 } } \\ { \square } & { \ddots } & { 0 } & { \vdots } \\ { \square } & { \square } & { 1 } & { - a _ { n - 1 } } \end{array} \right)$ ; confidence 0.700
102. ; $\left( \begin{array} { c c c c } { 0 } & { 1 } & { \square } & { \square } \\ { \square } & { \ddots } & { \ddots } & { \square } \\ { \square } & { \square } & { 0 } & { 1 } \\ { - a _ { 0 } } & { \cdots } & { \cdots } & { - a _ { n - 1 } } \end{array} \right)$ ; confidence 0.805
103. ; $\left. \begin{array} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) } \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon - \mu _ { 1 } L ) } \\ { \frac { d L } { d t } = \mu _ { 2 } L F - \nu L } \end{array} \right.$ ; confidence 0.937
104. ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
105. ; $( A ) = \operatorname { dim } \operatorname { Ker } D _ { A } ^ { 0 } - \operatorname { dim } ( \operatorname { Ker } D _ { A } ^ { 1 } / \operatorname { Ran } D _ { A } ^ { 0 } ) + \operatorname { dim } ( X / \operatorname { Ran } D _ { A } ^ { 1 } )$ ; confidence 0.752
106. ; $\frac { \text { Vol } ( \partial \Omega ) } { \text { Vol } ( \Omega ) } \geq \frac { \mathfrak { c } _ { 1 } } { \operatorname { diam } \Omega } \cdot \omega , \quad \mathfrak { c } _ { 1 } = \frac { 2 \pi \alpha ( n - 1 ) } { \alpha ( n ) }$ ; confidence 0.087
107. ; $F ^ { \mu \nu } = \left( \begin{array} { c c c c } { 0 } & { E _ { X } } & { E _ { y } } & { E _ { z } } \\ { - E _ { x } } & { 0 } & { H _ { z } } & { - H _ { y } } \\ { - E _ { y } } & { - H _ { z } } & { 0 } & { H _ { X } } \\ { - E _ { z } } & { H _ { y } } & { - H _ { X } } & { 0 } \end{array} \right)$ ; confidence 0.158
108. ; $p ( \alpha , t ) = \left\{ \begin{array} { l l } { p _ { 0 } ( \alpha - t ) \frac { \Pi ( \alpha ) } { \Pi ( \alpha - t ) } } & { \text { if } \alpha \geq t } \\ { b ( t - \alpha ) \Pi ( \alpha ) } & { \text { if } \alpha < t } \end{array} \right.$ ; confidence 0.451
109. ; $H ^ { m } ( E ) = \operatorname { sup } _ { \delta > 0 } \operatorname { inf } \{ c _ { m } \sum _ { i } | E _ { i } | ^ { m } : \quad \begin{array} { c } { E \subset \cup _ { i } E _ { i } } \\ { | E _ { i } | < \delta \text { for alli } } \end{array} \}$ ; confidence 0.095
110. ; $P = \left( \begin{array} { c c } { \lambda _ { + } } & { 0 } \\ { 0 } & { \lambda _ { - } } \end{array} \right) , \quad P ^ { N } = \left( \begin{array} { c c } { \lambda _ { + } ^ { N } } & { 0 } \\ { 0 } & { \lambda ^ { N } } \end{array} \right)$ ; confidence 0.901
111. ; $\sum _ { m = 0 } ^ { \infty } \frac { 1 } { ( 2 \pi i ) ^ { m / 3 } } \int _ { T } \sum _ { P = \{ ( z _ { j } , z _ { j } ^ { \prime } ) \} } ( - 1 ) ^ { \perp } D _ { P } \bigwedge _ { j = 1 } ^ { m } \frac { d z _ { j } - d z _ { j } ^ { \prime } } { z _ { j } - z _ { j } ^ { \prime } }$ ; confidence 0.129
112. ; $\left( \begin{array} { c c c c } { S _ { 0 } } & { 0 } & { \ldots } & { 0 } \\ { S _ { 1 } } & { S _ { 0 } } & { \ldots } & { 0 } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { S _ { n - 1 } } & { S _ { n - 2 } } & { \ldots } & { S _ { 0 } } \end{array} \right)$ ; confidence 0.600
113. ; $\varphi _ { M } ^ { i } : \operatorname { Ext } _ { A } ^ { i } ( A / \mathfrak { m } , M ) \rightarrow H _ { m } ^ { i } ( M ) = \operatorname { lim } _ { n \rightarrow \infty } \operatorname { Ext } _ { A } ^ { i } ( A / \mathfrak { m } ^ { n } , M )$ ; confidence 0.393
114. ; $( S ) g ( \overline { u } _ { 1 } ) = \left\{ \begin{array} { c l } { \operatorname { min } } & { c ^ { T } x + \overline { u } ^ { T } ( A _ { 1 } x - b _ { 1 } ) } \\ { \text { s.t. } } & { A _ { 2 } x \leq b _ { 2 } } \\ { x } & { \geq 0 } \end{array} \right.$ ; confidence 0.060
115. ; $K _ { BM } ( \zeta , z ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - z ) \wedge \omega ( \zeta ) } { | \zeta - z | ^ { 2 n } } , \omega _ { \zeta } ^ { \prime } ( \overline { \zeta } - z )$ ; confidence 0.289
116. ; $f _ { l + 1 / 2 } ^ { \operatorname { mac } } = \left\{ \begin{array} { l } { \frac { 1 } { 2 } ( \hat { f } _ { i } ^ { + } + f _ { l + 1 } ^ { n } ) } \\ { \text { or } } \\ { \frac { 1 } { 2 } ( \hat { f } _ { i + 1 } ^ { - } + f _ { l } ^ { n } ) } \end{array} \right.$ ; confidence 0.206
117. ; $w ( i , j , k , l ) = w \left( \begin{array} { c c c } { \square } & { l } & { \square } \\ { i } & { + } & { k } \\ { \square } & { j } & { \square } \end{array} \right) = \operatorname { exp } ( - \frac { \epsilon ( i , j , k , l ) } { k _ { B } T } )$ ; confidence 0.405
118. ; $\Omega ^ { \bullet } ( \tilde { M } _ { C } ) \rightleftarrows \operatorname { Hom } _ { K _ { \infty } } ( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } ) )$ ; confidence 0.185
119. ; $\frac { d C _ { j } } { d x } ( x _ { i } ) = \left\{ \begin{array} { l l } { 0 } & { \text { for } i = j } \\ { \frac { 1 } { 2 } ( - 1 ) ^ { i + j } \operatorname { cot } \frac { x _ { i } - x _ { j } } { 2 } } & { \text { for } i \neq j } \end{array} \right.$ ; confidence 0.674
120. ; $( \frac { \partial \phi } { \partial t } ) | _ { x _ { k } 0 } = ( \frac { \partial \phi } { \partial t } ) | _ { x _ { i } } + ( \frac { \partial \phi } { \partial x _ { i } } ) | _ { t } ( \frac { \partial x _ { i } } { \partial t } ) | _ { x _ { k } 0 }$ ; confidence 0.179
121. ; $\{ s \in S : \left( \begin{array} { c c c } { x _ { 11 } ( s _ { 11 } ) } & { \dots } & { x _ { 1 n } ( s _ { 1 n } ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( s _ { p 1 } ) } & { \dots } & { x _ { p n } ( s _ { p n } ) } \end{array} \right) \in B \}$ ; confidence 0.303
122. ; $\operatorname { cos } \alpha = \operatorname { sup } \left\{ \begin{array} { r l } { u \in U } & { V ^ { \perp } } \\ { \langle u , v \rangle : } & { v \in V \cap U ^ { \perp } } \\ { \| u \| , \| v \| \leq 1 } \end{array} \right\}$ ; confidence 0.100
123. ; $\operatorname { det } \left( \begin{array} { c c c } { 1 } & { \ldots } & { I } \\ { X _ { 1 } } & { \ldots } & { X _ { n } } \\ { \vdots } & { \ldots } & { \vdots } \\ { X _ { 1 } ^ { n - 1 } } & { \ldots } & { X _ { n } ^ { n - 1 } } \end{array} \right)$ ; confidence 0.148
124. ; $= \frac { 1 } { 2 \pi i } \int _ { L } \frac { \prod _ { j = 1 } ^ { m } \Gamma ( b _ { j } - s ) \prod _ { j = 1 } ^ { n } \Gamma ( 1 - a _ { j } + s ) } { \prod _ { j = m + 1 } ^ { q } \Gamma ( 1 - b _ { j } + s ) \prod _ { j = n + 1 } ^ { p } \Gamma ( a _ { j } - s ) } x ^ { s } d s$ ; confidence 0.471
125. ; $\times \int _ { - \infty } ^ { \infty } \tau | \Gamma ( c - \alpha + \frac { i \tau } { 2 } ) | ^ { 2 } \times \times \square _ { 2 } F _ { 1 } ( \alpha + \frac { i \tau } { 2 } , a - \frac { i \tau } { 2 } ; c ; - \frac { 1 } { x } ) f ( \tau ) d \tau$ ; confidence 0.140
126. ; $= \lambda \operatorname { lim } _ { N \rightarrow \infty } \sum _ { t = 1 } ^ { N } E \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ( \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ) ^ { T }$ ; confidence 0.760
127. ; $\operatorname { div } v = \frac { f ^ { \prime } ( \theta ) } { f ( \theta ) } ( \frac { \partial \theta } { \partial t } + \nabla \theta y ) = \alpha ( \theta ) ( \frac { \partial \theta } { \partial t } + \nabla \theta y )$ ; confidence 0.575
128. ; $\left. \begin{array} { c } { ( \frac { d ^ { 2 } u } { d t ^ { 2 } } , v ) _ { L ^ { 2 } } + a ( u , v ) = ( f ( t ) , v ) _ { L ^ { 2 } } } \\ { \text { a.e.t } \in [ 0 , T ] , v \in V } \\ { u ( 0 ) = u _ { 0 } , \frac { d u } { d t } ( 0 ) = u _ { 1 } } \end{array} \right.$ ; confidence 0.217
129. ; $\lambda = \square \left. \begin{array} { l l l } { \bullet } & { \bullet } & { \bullet } \\ { \lambda = } & { \square \bullet } & { \bullet } & { \square } \\ { \square } & { \square } & { \bullet } \end{array} \right.$ ; confidence 0.116
130. ; $E | W ^ { \alpha } ( t ) | \sim \left\{ \begin{array} { l l } { \sqrt { \frac { 8 t } { \pi } } , } & { d = 1 } \\ { \frac { 2 \pi t } { \operatorname { log } t } , } & { d = 2 } \\ { \kappa _ { \alpha } t , } & { d \geq 3 } \end{array} \right.$ ; confidence 0.110
131. ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.945
132. ; $\int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { t } } { t } d t \equiv \operatorname { lim } _ { \epsilon \rightarrow 0 , \rho \rightarrow \infty } \int _ { \epsilon } ^ { \rho } \frac { f ^ { * } \mu _ { t } } { t } d t = c _ { \mu } f$ ; confidence 0.478
133. ; $= \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } & { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } & { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right)$ ; confidence 0.292
134. ; $\operatorname { det } ( X _ { 1 } ) \ldots \operatorname { det } ( X _ { n } ) = ( - 1 ) ^ { n } \operatorname { det } ( A _ { n } ) , \operatorname { det } ( I - \lambda X _ { 1 } ) \ldots \operatorname { det } ( I - \lambda X _ { n } )$ ; confidence 0.776
135. ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
136. ; $( B , \delta ) : 0 \rightarrow B _ { r } \stackrel { \delta _ { r } } { \rightarrow } \ldots \stackrel { \delta _ { 1 } } { \rightarrow } B _ { 1 } \stackrel { \delta _ { 0 } } { \rightarrow } L ( \lambda ) \rightarrow 0$ ; confidence 0.151
137. ; $\operatorname { limsup } _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } \| \alpha _ { n } + \beta _ { n } \| = 2 ^ { - 1 / 4 }$ ; confidence 0.470
138. ; $- \frac { 1 } { 2 } \sum _ { i , j = 1 } ^ { n } \frac { \partial ^ { 2 } \mu _ { 0 } } { \partial k _ { i } \partial \dot { k } _ { j } } ( k _ { c } , R _ { c } ) \frac { \partial ^ { 2 } A } { \partial \xi _ { i } \partial \xi _ { j } } + 1 A | A | ^ { 2 }$ ; confidence 0.456
139. ; $E [ U _ { \infty } ^ { 1 } U _ { \infty } ^ { 2 } ] = \int _ { \partial D } u _ { 1 } u _ { 2 } \frac { d \vartheta } { 2 \pi } = \int _ { \partial D } v _ { 1 } v _ { 2 } \frac { d \vartheta } { 2 \pi } = E [ V _ { \infty } ^ { 1 } V _ { \infty } ^ { 2 } ]$ ; confidence 0.554
140. ; $\left( \begin{array} { l } { v } \\ { \theta } \\ { p } \end{array} \right) = \sum _ { n = 0 } ^ { \infty } \varepsilon ^ { n } \left( \begin{array} { c } { v _ { n } } \\ { \theta _ { n } } \\ { p _ { n } } \end{array} \right)$ ; confidence 0.329
141. ; $\left. \begin{array} { c c c } { \square } & { c _ { 2 } } & { \square } \\ { \square } & { \square } & { \searrow ^ { \phi _ { 2 } } } \\ { \square ^ { \phi _ { 1 } } } & { \nearrow } & { \vec { \phi _ { 3 } } } \end{array} \right.$ ; confidence 0.190
142. ; $\frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma \omega ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.852
143. ; $\alpha ( z ) : = \prod _ { j = 1 } ^ { J } \frac { z - i k _ { j } } { z + i k _ { j } } \operatorname { exp } \{ - \frac { 1 } { 2 \pi i } \int _ { - \infty } ^ { \infty } \frac { \operatorname { ln } ( 1 - | r _ { + } ( k ) | ^ { 2 } ) } { k - z } d k \}$ ; confidence 0.801
144. ; $\left\{ \begin{array}{l}{ m = - ( \frac { \partial F } { \partial H } ) _ { T } }\\{ \chi = ( \frac { \partial m } { \partial H } ) _ { T } }\\{ S = - ( \frac { \partial F } { \partial T } ) _ { H } }\end{array} \right.$ ; confidence 0.670
145. ; $\frac { Vol ( \partial \Omega ) ^ { n } } { Vol ( \Omega ) ^ { n - 1 } } \geq \mathfrak { c } _ { 2 } \cdot \omega ^ { n + 1 } , \quad \mathfrak { c } _ { 2 } = \frac { \alpha ( n - 1 ) ^ { n } } { ( \frac { \alpha ( n ) } { 2 } ) ^ { n - 1 } }$ ; confidence 0.077
146. ; $\times G _ { p + 2 , q } ^ { q - m , p - n + 2 } \left\{ \begin{array} { c } { | \mu + i \tau , \mu - i \tau , - ( \alpha _ { p } ^ { n + 1 } ) , - ( \alpha _ { n } ) } \\ { - ( \beta _ { q } ^ { m + 1 } ) , - ( \beta _ { m } ) } \end{array} \right\}$ ; confidence 0.103
147. ; $\eta ( y ) = \left\{ \begin{array} { l l } { \operatorname { sup } \{ \xi ( x ) : x \in R ^ { n } , \psi ( x ) = y \} , } & { \psi ^ { - 1 } ( y ) \neq \emptyset } \\ { 0 , } & { \psi ^ { - 1 } ( y ) = \emptyset } \end{array} \right.$ ; confidence 0.208
148. ; $\frac { ( - 1 ) ^ { ( k - 1 ) l } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma K ( L ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( 1 + 2 ) , \ldots } )$ ; confidence 0.149
149. ; $V _ { j } ^ { n } \leq \operatorname { max } ( \operatorname { max } _ { 0 \leq j \leq J } V _ { j } ^ { 0 } , \operatorname { max } _ { 0 \leq m \leq n } V _ { 0 } ^ { m } , \operatorname { max } _ { 0 \leq m \leq n } V _ { j } ^ { m } )$ ; confidence 0.452
150. ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711
151. ; $\sigma ( A ) = \sigma _ { Bloch } = \cup _ { m = 1 } ^ { \infty } [ \operatorname { min } _ { \eta \in Y ^ { \prime } } \lambda _ { m } ( \eta ) , \operatorname { max } _ { \eta \in Y ^ { \prime } } \lambda _ { m } ( \eta ) ]$ ; confidence 0.644
152. ; $S ( \phi ) = \sum _ { | \alpha | = 0 } ^ { k - 1 } S _ { \alpha i } ^ { \alpha } ( \phi ) \omega _ { \alpha } ^ { \alpha } \wedge ( \frac { \partial } { \partial x _ { i } } - ( \alpha x _ { 1 } \wedge \ldots \wedge d x _ { n } ) )$ ; confidence 0.107
153. ; $\frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma L ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots ) +$ ; confidence 0.791
154. ; $L _ { \gamma , 1 } = \frac { 1 } { \sqrt { \pi } ( \gamma - \frac { 1 } { 2 } ) } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 / 2 ) } ( \frac { \gamma - \frac { 1 } { 2 } } { \gamma + \frac { 1 } { 2 } } ) ^ { \gamma + 1 / 2 }$ ; confidence 0.926
155. ; $= - J - k _ { B } \operatorname { Tn } \{ \operatorname { cosh } ( \frac { H } { k _ { B } T } ) + + [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 }$ ; confidence 0.503
156. ; $\tilde { \chi } ( \xi ) = \frac { 8 \pi } { \xi ^ { 2 } } \operatorname { lim } _ { \varepsilon \downarrow 0 } \int _ { S ^ { 2 } } A ( \theta ^ { \prime } , \alpha ) v _ { \varepsilon } ( \alpha , \theta ) d \alpha$ ; confidence 0.228
157. ; $= ( \frac { e ^ { \sum _ { 1 } y _ { i } z ^ { - i } } \tau _ { n + 1 } ( x , y - [ z ] ) z ^ { n } } { \tau _ { n } ( x , y ) } | _ { n \in Z } , ( L _ { 1 } , L _ { 2 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) ) = ( z , z ^ { - 1 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) )$ ; confidence 0.149
158. ; $\sum _ { 0 \leq k < N } 2 ^ { - k } \sum _ { | \alpha | + | \beta | = k } \frac { ( - 1 ) ^ { \beta | } } { \alpha ! \beta ! } D _ { \xi } ^ { \alpha } \partial _ { x } ^ { \beta } a D _ { \xi } ^ { \beta } \partial _ { x } ^ { \alpha } b$ ; confidence 0.150
159. ; $= \{ \frac { \beta } { 1 + \alpha ^ { 2 } } \int _ { 0 } ^ { z } \frac { h ( \xi ) - \alpha i } { \xi ^ { 1 + \alpha \beta i / ( 1 + \alpha ^ { 2 } ) } } g ( \xi ) ^ { \beta / ( 1 + \alpha ^ { 2 } ) } d \xi \} ^ { ( 1 + \alpha i ) / \beta }$ ; confidence 0.175
160. ; $\frac { 1 } { \operatorname { sin } ^ { 2 } \omega } = \frac { 1 } { \operatorname { sin } ^ { 2 } \alpha } + \frac { 1 } { \operatorname { sin } ^ { 2 } \beta } + \frac { 1 } { \operatorname { sin } ^ { 2 } \gamma }$ ; confidence 0.999
161. ; $+ \frac { ( - 1 ) ^ { k ! } } { ( k - 1 ) ! ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times K ( [ L ( X _ { \sigma 1 } , \ldots , X _ { \sigma 1 } ) , X _ { \sigma ( 1 + 1 ) } ] , X _ { \sigma ( 1 + 2 ) } , \ldots ) +$ ; confidence 0.107
162. ; $\left\{ \begin{array} { l } { \Delta u + \alpha u = 0 \quad \text { in } \Omega } \\ { \frac { \partial u } { \partial n } = 0 \text { and } u = 1 \quad \text { on } \partial \Omega } \end{array} \right.$ ; confidence 0.733
163. ; $\frac { \overline { \Omega } \Omega ^ { \prime } } { 2 \operatorname { sin } \omega } = \overline { O \Omega } = \overline { O \Omega ^ { \prime } } = R \sqrt { 1 - 4 \operatorname { sin } ^ { 2 } \omega }$ ; confidence 0.871
164. ; $\frac { \partial ^ { 2 } u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } \partial x _ { 2 } ^ { \prime } } - \frac { \partial ^ { 2 } u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } \partial x _ { 1 } ^ { \prime } } = 0$ ; confidence 0.984
165. ; $\Delta ( z _ { 1 } , z _ { 2 } ) = \operatorname { det } \left[ \begin{array} { c c } { E _ { 1 } z _ { 1 } - A _ { 1 } } & { E _ { 2 } z _ { 2 } - A _ { 2 } } \\ { E _ { 3 } z _ { 1 } - A _ { 3 } } & { E _ { 4 } z _ { 2 } - A 4 } \end{array} \right] =$ ; confidence 0.515
166. ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
167. ; $= \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau$ ; confidence 0.627
168. ; $= ( \frac { e ^ { \sum _ { 1 } ^ { \infty } x _ { i } ^ { i } z ^ { i } } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) z ^ { n } } { \tau _ { n } ( x , y ) } | _ { n \in Z } , \Psi _ { 2 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } y _ { i } z ^ { - i } } S _ { 2 } \chi ( z ) =$ ; confidence 0.338
169. ; $\operatorname { lim } _ { \mu \rightarrow \alpha } [ \rho ( \lambda , \mu ) - \rho ( 0 , \mu ) ] = \frac { 1 } { 2 } \operatorname { log } \frac { | 1 - \lambda \overline { a } ^ { 2 } } { 1 - | \lambda | ^ { 2 } }$ ; confidence 0.594
170. ; $P ( X \leq \lambda - t ) \leq \operatorname { exp } ( - \frac { \phi ( - t / \lambda ) \lambda ^ { 2 } } { \overline { \Delta } } ) \leq \operatorname { exp } ( - \frac { t ^ { 2 } } { 2 \overline { \Delta } } )$ ; confidence 0.591
171. ; $\operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma ) = \operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \overline { \gamma } )$ ; confidence 0.644
172. ; $= \{ \frac { m } { 1 + \alpha ^ { 2 } } \int _ { 0 } ^ { z } \frac { p _ { 1 } ( s ) - \alpha i } { s ^ { 1 - \frac { m } { 1 + \alpha i } } } e ^ { \frac { m } { 1 + \alpha ^ { 2 } } \int _ { 0 } ^ { s } \frac { p _ { 0 } ( t ) - 1 } { t } d t } d s \}$ ; confidence 0.221
173. ; $R = \left( \begin{array} { l l } { R _ { 11 } } & { R _ { 12 } } \\ { R _ { 21 } } & { R _ { 22 } } \end{array} \right) , F = \left( \begin{array} { l l } { F _ { 1 } } & { 0 } \\ { F _ { 2 } } & { F _ { 3 } } \end{array} \right)$ ; confidence 0.347
174. ; $\overline { u } ( z ) = \int _ { \partial D _ { m } } w ( \zeta ) \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - z _ { k } ) d \overline { \zeta } [ k ] \wedge d \zeta } { | \zeta - z | ^ { 2 n } }$ ; confidence 0.850
175. ; $\frac { - 1 } { k ! ( 1 - 1 ) ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma \omega ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.504
176. ; $\frac { 1 } { ( k + 1 ) ! ( 1 - 1 ) ! } \times \times \sum _ { \sigma \in S _ { k + 1 } } \operatorname { sign } \sigma . \omega ( K ( X _ { \sigma 1 } , \ldots , X _ { \sigma ( k + 1 ) } ) , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.423
177. ; $= - \frac { \partial u } { \partial \eta } + \frac { 2 } { \lambda } \operatorname { sin } ( \frac { u ( \xi , \eta ) - u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { 2 } )$ ; confidence 0.967
178. ; $\left.\begin{array} { l l } { E _ { l } } & { 0 } \\ { E _ { 3 } } & { 0 } \end{array} \right] T _ { p , q - 1 } + \left[ \begin{array} { l l } { 0 } & { E _ { 2 } } \\ { 0 } & { E _ { 4 } } \end{array} \right] T _ { p - 1 , q } +$ ; confidence 0.596
179. ; $| d \varphi | ^ { 2 } ( x ) = g ^ { i j } ( x ) h _ { \alpha \beta } ( \varphi ( x ) ) \cdot \frac { \partial \varphi ^ { \alpha } } { \partial x ^ { i } } \frac { \partial \varphi ^ { \beta } } { \partial x ^ { j } }$ ; confidence 0.882
180. ; $\omega _ { 1 } * \omega _ { 2 } ( t ) = \left\{ \begin{array} { l l } { \omega _ { 1 } ( t ) } & { \text { for } 0 \leq t \leq 1 / 2 } \\ { \omega ( 2 t - 1 ) } & { \text { for } 1 / 2 \leq t \leq 1 } \end{array} \right.$ ; confidence 0.722
181. ; $\Theta = \left( \begin{array} { c c c } { A } & { } & { K } & { J } \\ { \mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - } } & { \square } & { \mathfrak { E } } \end{array} \right)$ ; confidence 0.446
182. ; $\sum _ { | \alpha | = 0 } ^ { k } ( \frac { \partial L } { \partial y _ { \alpha } ^ { \alpha } \circ \sigma ^ { k } } ) ( \frac { \partial } { \partial x } ) ^ { \alpha } ( Z ^ { \alpha } \circ \sigma ) \Delta$ ; confidence 0.391
183. ; $\operatorname { Im } h ^ { I I } ( z ) = \operatorname { Im } z ( \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { | z - \lambda | ^ { 2 } } d \lambda ) + 2 \pi \operatorname { Re } W ( z )$ ; confidence 0.861
184. ; $= 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) | \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } | f ( \tau ) | ^ { 2 } d \tau$ ; confidence 0.436
185. ; $\frac { 1 } { p } : = \frac { \operatorname { log } a _ { \mathfrak { M } } } { \operatorname { log } m } = \frac { \operatorname { log } a _ { R } } { \operatorname { log } n } \text { for all } m , n \geq 2$ ; confidence 0.063
186. ; $[ \left( \begin{array} { l } { a } \\ { b } \end{array} \right) \left( \begin{array} { l } { c } \\ { d } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right) ] : =$ ; confidence 0.645
187. ; $= \frac { 1 } { k ! ! ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times L ( K _ { \sigma 1 } , \ldots , X _ { \sigma k } ) ) ( \omega ( X _ { \sigma ( k + 1 ) } , \ldots , X _ { \sigma ( k + 1 ) } ) ) +$ ; confidence 0.142
188. ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.580
189. ; $\ldots \rightarrow D _ { 2 } \stackrel { \delta _ { 2 } } { \rightarrow } D _ { 1 } \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } M \rightarrow 0$ ; confidence 0.319
190. ; $\times [ CF ( \zeta - z , w ) - \frac { ( n - 1 ) ! ( | \zeta | ^ { 2 m } - \langle \overline { \zeta } , z | ^ { m } ) ^ { n } } { [ 2 \pi i | \zeta | ^ { 2 m } \{ \overline { \zeta } , \zeta - z \} ] ^ { N } } \sigma _ { 0 } ]$ ; confidence 0.191
191. ; $+ \frac { - 1 } { k ! ( 1 - 1 ) ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times L ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.291
192. ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Re } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.737
193. ; $A _ { s } ^ { + } = \left\{ \begin{array} { l l } { f : } & { f \in A _ { s } } \\ { f : } & { f ^ { ( s ) } \text { has no change of } \operatorname { sign } \operatorname { in } ( a , b ) } \end{array} \right\}$ ; confidence 0.358
194. ; $\left\{ \begin{array} { l l } { \phi ( 0 , \lambda ) = 1 , } & { \theta ( 0 , \lambda ) = 0 } \\ { \phi ^ { \prime } ( 0 , \lambda ) = 0 , } & { \theta ^ { \prime } ( 0 , \lambda ) = 1 } \end{array} \right.$ ; confidence 0.412
195. ; $R _ { n } \stackrel { \omega } { \rightarrow } R \text { and } \operatorname { lim } _ { \varepsilon \rightarrow 0 } \operatorname { sup } _ { n } \int _ { 0 } ^ { \varepsilon } z R _ { n } ( d z ) = 0$ ; confidence 0.236
196. ; $\varepsilon \left( \begin{array} { l l } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right)$ ; confidence 0.819
197. ; $T _ { 10 } = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { 0 } & { 0 } \end{array} \right] , T _ { 01 } = \left[ \begin{array} { c c } { 0 } & { 0 } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right]$ ; confidence 0.564
198. ; $( P ) v ^ { * } = \left\{ \begin{array} { c c } { \operatorname { min } } & { c ^ { T } x } \\ { \text { s.t. } } & { A _ { 1 } x \leq b _ { 1 } } \\ { } & { A _ { 2 } x \leq b _ { 2 } } \\ { x \geq 0 } \end{array} \right.$ ; confidence 0.129
199. ; $\frac { \partial F _ { \mu \nu } } { \partial x ^ { \sigma } } + \frac { \partial F _ { \nu \sigma } \sigma } { \partial x ^ { \mu } } + \frac { \partial F _ { \sigma \mu } } { \partial x ^ { \nu } } = 0$ ; confidence 0.769
200. ; $= D _ { t } ^ { m } u + \sum _ { j = 1 } ^ { m } \sum _ { | \alpha | \leq m - j } p _ { j , \alpha } ( t , x ) D _ { t } ^ { j } D _ { x } ^ { \alpha } u = f ( t , x ) , D _ { t } ^ { j } u ( 0 , x ) = u _ { j } ^ { 0 } ( x ) , \quad j = 0 , \ldots , m - 1$ ; confidence 0.410
201. ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
202. ; $= \{ z : \sum _ { l = 1 } ^ { n } b _ { j } ^ { l } | c _ { l } ^ { p } ( z _ { 1 } - a _ { 1 } ) + \ldots + c _ { l n } ^ { p } ( z _ { n } - a _ { n } ) | ^ { 2 } < r _ { j , k } ^ { 2 } \} , b _ { j } ^ { l } > 0 ; j = 1 , \ldots , n ; k = 1,2 ; p = 1 , \ldots , n$ ; confidence 0.067
203. ; $d \omega _ { 3 } ( \lambda ) = \frac { \lambda ^ { g + 1 } - \frac { 1 } { 2 } \sigma _ { 1 } \lambda ^ { g } + \beta _ { 1 } \lambda ^ { g - 1 } + \ldots + \beta _ { g } } { \sqrt { R _ { g } ( \lambda ) } } d \lambda$ ; confidence 0.731
204. ; $\varphi _ { 0 } ^ { 0 } , \ldots , \varphi _ { n _ { 0 } } ^ { 0 } - 1 \supset \psi ^ { 0 } ; \ldots ; \varphi _ { 0 } ^ { m - 1 } , \ldots , \varphi _ { n _ { m - 1 } } ^ { m - 1 } - 1 \supset \psi ^ { m - 1 } \vdash _ { G }$ ; confidence 0.092
205. ; $\{ x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } \}$ ; confidence 0.970
206. ; $d \overline { \zeta } [ k ] = d \overline { \zeta } _ { 1 } \wedge \ldots \wedge d \overline { \zeta } _ { k - 1 } \wedge d \overline { \zeta } k + 1 \wedge \ldots \wedge d \overline { \zeta }$ ; confidence 0.263
207. ; $A _ { k } = \left( \begin{array} { c c } { A _ { k } ^ { \prime } } & { 0 } \\ { i \Phi ^ { \prime \prime } \sigma _ { k } \Phi ^ { \prime } } & { A _ { k } ^ { \prime \prime } } \end{array} \right) ( k = 1,2 )$ ; confidence 0.865
208. ; $0 \rightarrow D _ { n } \stackrel { \delta _ { n } } { \rightarrow } \ldots \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } C \rightarrow 0$ ; confidence 0.378
209. ; $= \frac { 1 } { k ! ! ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , L ( X _ { \sigma ( k + 1 ) } , \ldots , X _ { \sigma ( k + 1 ) } ) ] +$ ; confidence 0.218
210. ; $q R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { , j } x _ { i } x _ { j }$ ; confidence 0.112
211. ; $\left. \begin{array} { l } { x \sum _ { j = i } ^ { N } \beta _ { j } v _ { j } } \\ { \text { ject to } \sum _ { j = 1 } ^ { n } \alpha _ { j } v _ { j } \leq \mu _ { i } } \\ { v _ { j } \geq 0 } \end{array} \right.$ ; confidence 0.116
212. ; $( N ) = \frac { \alpha \operatorname { log } ( \frac { 1 - \beta } { \alpha } ) + ( 1 - \alpha ) \operatorname { log } ( \frac { \beta } { 1 - \alpha } ) } { ( p - q ) \operatorname { log } ( q / p ) }$ ; confidence 0.993
213. ; $A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n }$ ; confidence 0.187
214. ; $= \frac { 1 } { ( p + 1 ) \pi } \int _ { - \pi } ^ { \pi } [ f ( x + t ) \operatorname { sin } \frac { 2 n + 1 - p } { 2 } t \frac { \operatorname { sin } ( p + 1 ) t / 2 } { 2 \operatorname { sin } ^ { 2 } t / 2 } ] d t$ ; confidence 0.993
215. ; $= 1 - \frac { 2 } { \pi } \sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k - 1 } \int _ { ( 2 k - 1 ) \pi } ^ { 2 k \pi } \frac { e ^ { - t ^ { 2 } \lambda / 2 } } { \sqrt { - t \operatorname { sin } t } } d t , \quad \lambda > 0$ ; confidence 0.429
216. ; $\mathfrak { V } ^ { \prime } = ( A _ { 1 } ^ { \prime } , A _ { 2 } ^ { \prime } , H ^ { \prime } , \Phi ^ { \prime } , E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma ^ { \prime } , \tilde { \gamma } ^ { \prime } )$ ; confidence 0.556
217. ; $\frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } [ \sum _ { k = 1 } ^ { q - 1 } \lambda _ { k } b _ { k } ^ { ( 2 ) } + ( 1 - \sigma _ { p - 1 } ) \frac { b _ { q } ^ { ( 2 ) } } { b _ { \gamma } } ] , 1 \leq p \leq q - 1$ ; confidence 0.354
218. ; $\times \int _ { \Gamma } f ( \zeta ) ( \frac { \operatorname { grad } \psi } { \langle \operatorname { grad } \psi , \zeta \rangle } ) ^ { q } CF ( \zeta , \operatorname { grad } \psi )$ ; confidence 0.323
219. ; $\sigma ( \Omega ( A ) ) = \left\{ \begin{array} { c c } { \text { boundary of } K _ { 1,2 } ( A ) } & { n = 2 } \\ { \cup _ { i , j = 1 , i \neq j } ^ { n } K _ { i , j } ( A ) } & { n \geq 3 } \end{array} \right.$ ; confidence 0.149
220. ; $f ( x ) = \frac { 1 } { ( \pi x ) ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) \times x | \Gamma ( \frac { 1 } { 2 } - \mu - i \tau ) | ^ { 2 } W _ { \mu , i \tau } ( x ) F ( \tau ) d$ ; confidence 0.818
221. ; $\operatorname { lim } _ { n \rightarrow \infty } H ( \theta _ { n } , \Theta _ { 0 } ) = 0 , \operatorname { lim } _ { n \rightarrow \infty } n H ^ { 2 } ( \theta _ { n } , \Theta _ { 0 } ) = \infty$ ; confidence 0.856
222. ; $c E [ | U _ { \tau } ^ { * } | ^ { N } ] \leq \operatorname { sup } _ { 0 < r < 1 } \int _ { \partial D } | f ( r e ^ { i \vartheta } ) | ^ { p } \frac { d \vartheta } { 2 \pi } \leq C E [ | U _ { \tau } ^ { * } | ^ { p } ]$ ; confidence 0.092
223. ; $\left( \begin{array} { c c c } { x _ { 11 } ( . ) } & { \dots } & { x _ { 1 n } ( . ) } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } ( . ) } & { \dots } & { x _ { p n ( \lambda } ) } \end{array} \right)$ ; confidence 0.161
224. ; $\operatorname { ch } V ( \lambda ) = \frac { \sum _ { w \in W } ( - 1 ) ^ { l ( w ) } e ^ { w ( \lambda + \rho ) - \rho } } { \prod _ { \alpha \in \Delta ^ { - } ( 1 - e ^ { \alpha } ) ^ { d i m g _ { \alpha } } } }$ ; confidence 0.113
225. ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } \| \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) g ( S ^ { n } y ) e ^ { 2 \pi i n \varepsilon } \| = 0$ ; confidence 0.914
226. ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { N } } \int _ { \partial \Omega } \frac { f ( \zeta ) \sigma \wedge ( \overline { \partial } \sigma ) ^ { n - 1 } } { ( 1 + \langle z , \sigma \} ) ^ { N } } , z \in E$ ; confidence 0.319
227. ; $0 < \operatorname { liminf } _ { x \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) \leq \operatorname { limsup } _ { n \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) < 1$ ; confidence 0.693
228. ; $\frac { e ^ { - ( x + \lambda ) / 2 } x ^ { ( n - 2 ) / 2 } } { 2 ^ { x / 2 } \Gamma ( 1 / 2 ) } \sum _ { r = 0 } ^ { \infty } \frac { \lambda ^ { r } x ^ { r } } { ( 2 r ) ! } \frac { \Gamma ( r + 1 / 2 ) } { \Gamma ( r + n / 2 ) }$ ; confidence 0.200
229. ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
230. ; $= \frac { \partial u } { \partial \xi } - 2 \lambda \operatorname { sin } ( \frac { u ( \xi , \eta ) + u ^ { \prime } ( \xi ^ { \prime } ( \xi , \eta ) , \eta ^ { \prime } ( \xi , \eta ) ) } { 2 } )$ ; confidence 0.990
231. ; $\overline { d } _ { ( 1 ^ { n } ) } \preceq \overline { d } _ { ( 2,1 ^ { n - 2 } ) } \preceq \ldots \preceq \overline { d } _ { ( k , 1 ^ { n - k } ) } \preceq \ldots \preceq \overline { d } _ { ( n ) }$ ; confidence 0.240
232. ; $M ( A _ { n } ) \cong \left\{ \begin{array} { l l } { Z _ { 2 } } & { \text { if } n \geq 4 , n \neq 6,7 } \\ { Z _ { 6 } } & { \text { if } n = 6,7 } \\ { \{ e \} } & { \text { if } n < 4 } \end{array} \right.$ ; confidence 0.588
233. ; $r s = \frac { \sum _ { i = 1 } ^ { n } ( R _ { i } - \overline { R } ) ( S _ { i } - S ) } { \sqrt { \sum _ { i = 1 } ^ { n } ( R _ { i } - \overline { R } ) ^ { 2 } \sum _ { i = 1 } ^ { n } ( S _ { i } - \overline { S } ) ^ { 2 } } } =$ ; confidence 0.316
234. ; $\{ f , g \} = \sum ( \frac { \partial f } { \partial p _ { j } } \frac { \partial g } { \partial q _ { j } } - \frac { \partial f } { \partial q _ { j } } \frac { \partial g } { \partial p _ { j } } )$ ; confidence 0.901
235. ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) s \wedge ( \overline { \partial } s ) ^ { n - 1 } } { \langle \zeta - z , s \rangle ^ { \lambda } } , z \in E$ ; confidence 0.246
236. ; $\operatorname { sup } _ { 0 < | y | < \pi } | \int _ { - \infty } ^ { \infty } \varphi ( x ) e ^ { - i y x } d x - \sum _ { - \infty } ^ { \infty } \varphi ( k ) e ^ { - i k x } | \leq C \| \varphi \| _ { B V }$ ; confidence 0.347
237. ; $\times \operatorname { lim } _ { N \rightarrow \infty } \int _ { 1 / N } ^ { N } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) F ( \tau ) d \tau$ ; confidence 0.852
238. ; $| f ( V ) | \leq \mathfrak { c } _ { 1 } | V | ^ { \gamma } \quad \text { and } \quad | \sum _ { j = 1 } ^ { n } \frac { \partial f } { \partial v _ { j } } \tilde { \phi } ; | > c _ { 2 } | V | ^ { \gamma + m }$ ; confidence 0.105
239. ; $\left. \begin{array} { l l l } { \square } & { C } & { \square } \\ { \square _ { f } } & { \swarrow } & { \square } & { \searrow _ { g } } \\ { A } & { } & { \square } & { B } \end{array} \right.$ ; confidence 0.169
240. ; $\Delta ^ { 2 } u \equiv \frac { \partial ^ { 4 } u } { \partial x ^ { 4 } } + 2 \frac { \partial ^ { 4 } u } { \partial x ^ { 2 } \partial y ^ { 2 } } + \frac { \partial ^ { 4 } u } { \partial y ^ { 4 } }$ ; confidence 0.993
241. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } } \frac { \| \alpha _ { n } + \beta _ { n } \| } { \| \alpha _ { n } \| ^ { 1 / 2 } } = 1$ ; confidence 0.827
242. ; $\frac { \partial \vec { B } } { \partial t } = \operatorname { rot } [ \vec { v } \times \vec { B } ] , \frac { \partial \rho } { \partial t } + \operatorname { div } \rho \vec { v } = 0$ ; confidence 0.955
243. ; $\left\{ \begin{array} { l } { u _ { t } - u _ { k x } = 0 , \quad 0 < x < 1,0 < t } \\ { u ( 0 , t ) = u ( 1 , t ) = 0 , \quad 0 < t } \\ { u ( x , 0 ) = u ^ { 0 } ( x ) , \quad 0 \leq x \leq 1 } \end{array} \right.$ ; confidence 0.527
244. ; $m = \frac { \operatorname { sinh } ( \frac { H } { k _ { B } T } ) } { [ \operatorname { sinh } ^ { 2 } ( \frac { H } { k _ { B } T } ) + \operatorname { exp } ( - \frac { 4 J } { k _ { B } T } ) ] ^ { 1 / 2 } }$ ; confidence 0.975
245. ; $\left. \begin{array} { l } { \frac { d N } { d t } = N ( - 2 \alpha N - \delta F + \lambda ) } \\ { \frac { d F } { d t } = F ( 2 \beta N + \gamma F ^ { p } - \varepsilon ) } \end{array} \right.$ ; confidence 0.974
246. ; $\psi ( \gamma ) : = \frac { 2 } { \pi ^ { 2 } } \int _ { 0 } ^ { \operatorname { min } ( 1,1 / \gamma ) } \frac { \operatorname { arccos } ( \gamma t ) } { \sqrt { 1 - t ^ { 2 } } } d t , \gamma > 0$ ; confidence 0.680
247. ; $( u _ { m } ( v ) ) _ { n } ( w ) = \sum _ { i \geq 0 } ( - 1 ) ^ { i } \left( \begin{array} { c } { m } \\ { i } \end{array} \right) ( u _ { m } - i ( v _ { n } + i ( w ) ) - ( - 1 ) ^ { m } v _ { m + n } - i ( u _ { i } ( w ) ) )$ ; confidence 0.155
248. ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } \sum _ { j = 0 } ^ { \operatorname { min } ( k , l ) } \frac { ( - k ) _ { j } ( - l ) } { ( - k - l - \alpha ) j ! } r ^ { k + l - 2 j }$ ; confidence 0.187
249. ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374
250. ; $\operatorname { limsup } _ { n \rightarrow \infty } \pm \frac { n ^ { 1 / 4 } } { ( \operatorname { log } \operatorname { log } n ) ^ { 3 / 4 } } ( \alpha _ { n } ( t ) + \beta _ { n } ( t ) ) =$ ; confidence 0.985
251. ; $\operatorname { max } _ { r = 1 , \ldots , c n } \frac { | z _ { 1 } ^ { \prime } + \ldots + z _ { n } ^ { \prime } | } { \operatorname { min } _ { k = 1 , \ldots , n } | z _ { k } ^ { \prime } | } \geq m$ ; confidence 0.067
252. ; $= 2 ^ { 2 n k } \int _ { \Phi ^ { 2 k } } ^ { \alpha _ { 1 } ( Y _ { 1 } ) \ldots \alpha _ { 2 k } ( Y _ { 2 k } ) \cdot \alpha _ { 2 k + 1 } } ( X + \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } ( Y _ { j } - Y _ { l } ) )$ ; confidence 0.131
253. ; $= \frac { ( - 1 ) ^ { k + l } } { ( \alpha + 1 ) _ { k + l } } ( 1 - z z ) ^ { - \alpha } ( \frac { \partial } { \partial z } ) ^ { l } ( \frac { \partial } { \partial z } ) ^ { k } ( 1 - z z ) ^ { k + l + \alpha }$ ; confidence 0.924
254. ; $f _ { i } ( \vartheta ) = \frac { \operatorname { exp } ( g ( \vartheta ) + h ( i ) ) } { 1 + \operatorname { exp } ( g ( \vartheta ) + h ( i ) ) } , \vartheta \in \Theta , i = 1 , \ldots , n$ ; confidence 0.726
255. ; $h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} }$ ; confidence 0.188
256. ; $\operatorname { log } \operatorname { max } \{ | P _ { i } ( \omega ) | \} \geq - d ^ { \mu } ( c _ { 1 } d + c _ { 2 } h ) + c _ { 3 } d ^ { \nu } \operatorname { log } \frac { \rho } { | \omega | }$ ; confidence 0.531
257. ; $\int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } \frac { d x } { x } = \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) | F ( \tau ) | ^ { 2 } d \tau$ ; confidence 0.972
258. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \operatorname { log } P [ X _ { 1 } + \ldots + X _ { n } \geq n m ] = \int _ { m _ { 0 } } ^ { m } \frac { x - m } { V _ { F } ( x ) } d x$ ; confidence 0.193
259. ; $\frac { | \nabla ( A ) | } { \left( \begin{array} { c } { n } \\ { l + 1 } \end{array} \right) } \geq \frac { | A | } { \left( \begin{array} { l } { n } \\ { l } \end{array} \right) }$ ; confidence 0.226
260. ; $\operatorname { inf } _ { z _ { j } , w _ { j } } \operatorname { max } _ { k \in S _ { 1 } , \atop m \in S _ { 2 } } \frac { | h ( m , k ) | } { M _ { d } ^ { \prime } ( k ) M _ { d } ^ { \prime \prime } ( m ) }$ ; confidence 0.056
261. ; $( \frac { \partial } { \partial x } ) ^ { \alpha } = ( \frac { \partial } { \partial x _ { 1 } } ) ^ { \alpha _ { 1 } } \dots ( \frac { \partial } { \partial x _ { x } } ) ^ { \alpha _ { N } }$ ; confidence 0.072
262. ; $\operatorname { log } \frac { z ( \zeta ) - z ( \zeta ^ { \prime } ) } { \zeta - \zeta ^ { \prime } } = - \sum _ { k , l = 1 } ^ { \infty } \alpha _ { k l } \zeta ^ { - k } \zeta ^ { \prime - l }$ ; confidence 0.556
263. ; $= [ \sum _ { l = 0 } ^ { \infty } \sum _ { n = 0 } ^ { N } a _ { l } ^ { n } z ^ { n + i } ( \frac { \partial } { \partial z } ) ^ { n } ] [ \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { \lambda + k } ] =$ ; confidence 0.352
264. ; $\Omega ^ { k } ( f ^ { ( s ) } , \delta ) = \operatorname { sup } _ { | k | = 10 \leq t \leq \delta } \| \Delta _ { t h } ^ { k } f ^ { ( s ) } \| _ { L _ { p } ( \Omega _ { k t } ) } \leq M \delta ^ { * - s }$ ; confidence 0.088
265. ; $\operatorname { det } \Sigma = \operatorname { exp } \{ ( 2 \pi ) ^ { - 1 } \int _ { - \pi } ^ { \pi } \operatorname { log } \operatorname { det } 2 \pi f ( \lambda ) d \lambda \}$ ; confidence 0.984
266. ; $( e _ { i } ) _ { t } x ^ { ( j ) } = ( \left( \begin{array} { c } { i + j } \\ { i + 1 } \end{array} \right) + t \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right) x ^ { ( i + j ) }$ ; confidence 0.551
267. ; $C = \frac { \operatorname { det } \mu } { \operatorname { trace } ^ { 2 } \mu } \text { or } C ^ { \prime } = \frac { \operatorname { det } \mu } { \operatorname { trace } \mu }$ ; confidence 0.973
268. ; $\langle a b | c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c | b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle$ ; confidence 0.506
269. ; $= \sum _ { i = 0 } ^ { \infty } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { i } \sum _ { n = 0 } ^ { N } a _ { i } ^ { n } z ^ { n } ( \frac { \partial } { \partial z } ) ^ { n } z ^ { \lambda + k } =$ ; confidence 0.479
270. ; $\Phi ^ { * } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) | _ { \mathfrak { E } ( \lambda ) } : \mathfrak { E } ( \lambda ) \rightarrow \tilde { \mathfrak { C } } ( \lambda )$ ; confidence 0.228
271. ; $D _ { A } = \left( \begin{array} { c c c c } { 0 } & { 0 } & { 0 } & { 0 } \\ { A _ { 1 } } & { 0 } & { 0 } & { 0 } \\ { A _ { 2 } } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - A _ { 2 } } & { A _ { 1 } } & { 0 } \end{array} \right)$ ; confidence 0.935
272. ; $T ( n , k , r ) \geq \frac { n - k + 1 } { n - r + 1 } \left( \begin{array} { c } { n } \\ { r } \end{array} \right) / \left( \begin{array} { c } { k - 1 } \\ { r - 1 } \end{array} \right)$ ; confidence 0.381
273. ; $\tilde { h } ( X ) ^ { - 1 } = 1 + \operatorname { sup } _ { \alpha } | q _ { \alpha } ( X ) | + H ( X ) \operatorname { sup } _ { \alpha } \| q _ { \alpha } ^ { \prime } ( X ) \| _ { G _ { X } } ^ { 2 }$ ; confidence 0.695
274. ; $\alpha ( u , v ) = \int _ { \Omega } [ \sum _ { i , j = 1 } ^ { m } \alpha _ { i , j } \frac { \partial u } { \partial x _ { i } } \frac { \partial \sigma } { \partial x _ { j } } + c ( x ) u v ] d x$ ; confidence 0.237
275. ; $C ( \beta ) = \prod _ { j = 1 } ^ { n } \frac { \operatorname { exp } ( z _ { j } ^ { T } ( T _ { j } ) \beta ) } { \sum _ { k \in R _ { j } } \operatorname { exp } ( z _ { k } ^ { T } ( T _ { j } ) \beta ) }$ ; confidence 0.916
276. ; $\times \Gamma ( \frac { 1 } { 2 } - k - i \tau ) \int _ { 1 } ^ { \infty } P _ { i \tau } ^ { ( k ) } ( x ) f ( x ) d x , f ( x ) = \int _ { 0 } ^ { \infty } P _ { i \tau } ^ { ( k ) } - 1 / 2 ( x ) F ( \tau ) d \tau$ ; confidence 0.705
277. ; $\dot { q } _ { i } = A _ { i \alpha } q _ { \alpha } + B _ { i \alpha \beta } q _ { \alpha } q _ { \beta } + \frac { \partial } { \partial z } K ( z ) \frac { \partial q _ { i } } { \partial z }$ ; confidence 0.704
278. ; $\omega ( \tau ) = \frac { \tau } { \operatorname { sinh } ( \pi \tau ) } | \frac { \Gamma ( c - \alpha + \frac { i \tau } { 2 } ) } { \Gamma ( \alpha + \frac { i \tau } { 2 } ) } | ^ { 2 }$ ; confidence 0.855
279. ; $d ( x , y ) = \operatorname { inf } _ { \lambda \in \Lambda } \operatorname { max } \{ \| \lambda \| , \operatorname { sup } _ { 0 \leq t \leq 1 } | x ( t ) - y ( \lambda ( t ) ) | \}$ ; confidence 0.864
280. ; $\Delta x ^ { n } = \sum _ { m = 0 } ^ { n } \left[ \begin{array} { c } { n } \\ { m } \end{array} \right] _ { q } x ^ { n } \otimes x ^ { n - m } , S x ^ { n } = ( - 1 ) ^ { n } q ^ { n ( n - 1 ) / 2 } x ^ { n }$ ; confidence 0.173
281. ; $H _ { \epsilon } ^ { \prime } ( \xi ) = \frac { 1 } { 2 } \sum _ { i = 1 } ^ { \infty } \operatorname { log } \operatorname { max } \{ \frac { \lambda _ { i } } { f ( \epsilon ) } , 1 \}$ ; confidence 0.990
282. ; $= \int _ { a } ^ { b } [ \frac { \partial L } { \partial y } ( \sigma ^ { 1 } ( x ) ) - \frac { d } { d x } ( \frac { \partial L } { \partial y ^ { \prime } } ( \sigma ^ { 1 } ( x ) ) ) ] z ( x ) d x =$ ; confidence 0.831
283. ; $\Delta : = \left( \begin{array} { c c c } { a _ { 11 } } & { \dots } & { a _ { 1 r } } \\ { \vdots } & { \square } & { \vdots } \\ { a _ { r 1 } } & { \dots } & { a _ { m } } \end{array} \right)$ ; confidence 0.732
284. ; $\zeta _ { \lambda } ^ { + \lambda } = \zeta _ { \lambda } ^ { - \lambda } = i ^ { ( n - \gamma ( \lambda ) ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { \gamma } ( \lambda ) ) }$ ; confidence 0.071
285. ; $\xi _ { l } = \xi _ { l } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { l } ) , \quad \xi _ { r } = \xi _ { r } ^ { 0 } \operatorname { sin } ( \omega t - \varepsilon _ { r } )$ ; confidence 0.980
286. ; $\operatorname { exp } ( \sum _ { n \in N + 1 / 2 } \frac { y _ { n } } { n } x ^ { n } ) \operatorname { exp } ( - 2 \sum _ { n \in N + 1 / 2 } \frac { \partial } { \partial y _ { n } } x ^ { - n } )$ ; confidence 0.321
287. ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } | \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i n \varepsilon } | = 0$ ; confidence 0.507
288. ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382
289. ; $H ^ { \bullet } ( \Gamma \backslash X , \overline { M \otimes C } ) \rightleftarrows H ^ { \bullet } ( \Gamma \backslash X , \Omega ^ { \bullet } ( \tilde { M } _ { C } ) )$ ; confidence 0.176
290. ; $\rightarrow H ^ { \bullet - 1 } ( \partial ( \Gamma \backslash X ) , \tilde { M } ) \rightarrow H _ { C } ^ { \bullet } ( \Gamma \backslash X , \tilde { M } ) \rightarrow$ ; confidence 0.459
291. ; $= \int _ { a } ^ { b } [ \frac { \partial L } { \partial y } ( \sigma ^ { 1 } ( x ) ) z ( x ) + \frac { \partial L } { \partial y ^ { \prime } } ( \sigma ^ { 1 } ( x ) ) z ^ { \prime } ( x ) ] d x =$ ; confidence 0.826
292. ; $E ^ { \mathscr { A } } ( L ) = \sum _ { | \alpha | = 0 } ^ { k } ( - 1 ) ^ { | \alpha | } \gamma ^ { - 1 } D ^ { \alpha } ( \gamma \frac { \partial L } { \partial y _ { \alpha } ^ { \alpha } } )$ ; confidence 0.101
293. ; $\pm [ \operatorname { exp } ( \frac { 2 J } { k _ { B } T } ) \operatorname { cosh } ^ { 2 } ( \frac { H } { k _ { B } T } ) - 2 \operatorname { sinh } ( \frac { 2 J } { k _ { B } T } ) ] ^ { 1 / 2 }$ ; confidence 0.916
294. ; $\times \operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } ( X - M ) \Psi ^ { - 1 } ( X - M ) ^ { \prime } \} , X \in R ^ { p \times n } , M \in R ^ { p \times n } , \Sigma > 0 , \Psi > 0$ ; confidence 0.851
295. ; $\nu ( \zeta - a ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - \overline { a } _ { k } ) d \overline { \zeta } [ k ] \wedge d \zeta$ ; confidence 0.831
296. ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq \frac { 1 } { 3 } | g ( 0 ) | \prod _ { j = 1 } ^ { n } \frac { | z _ { j } | - \operatorname { exp } ( - 1 / m ) } { | z _ { j } | + 1 }$ ; confidence 0.392
297. ; $P _ { j } P _ { k } = \left\{ \left. \begin{array} { l l } { P _ { k } } & { \text { for } j = k } \\ { 0 } & { \text { for } j \neq k } \end{array} \right. ( j , k = 1 , \dots , n ) \right.$ ; confidence 0.545
298. ; $( r _ { D } \oplus z _ { D } ) \otimes R : ( H _ { M } ^ { i + 1 } ( X , Q ( m + 1 ) ) z ^ { \otimes R } ) \oplus ( B ^ { m } ( X ) \otimes R ) \rightleftarrows H _ { D } ^ { i + 1 } ( X _ { / R } , R ( m + 1 ) )$ ; confidence 0.151
299. ; $X ^ { 2 } = \sum _ { i = 1 } ^ { k } \frac { ( \nu _ { i } - n p _ { i } ) ^ { 2 } } { n p _ { i } } = \frac { 1 } { n } \sum \frac { \nu _ { i } ^ { 2 } } { p _ { i } } - n , \quad n = \nu _ { 1 } + \ldots + \nu _ { k }$ ; confidence 0.495
300. ; $\left. \begin{array}{l}{ U _ { 0 } ( x , y ) = 0 }\\{ U _ { 1 } ( x , y ) = 1 }\\{ U _ { n } ( x , y ) = x U _ { n - 1 } ( x , y ) + y U _ { n - 2 } ( x , y ) }\\{ n = 2 , 3 , \ldots }\end{array} \right.$ ; confidence 0.223
Maximilian Janisch/latexlist/latex/NoNroff/1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/1&oldid=44411