Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/13

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 09:58, 17 October 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 13 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

List

1. e036960205.png ; $\nu - 1 / 2 \in Z$ ; confidence 0.954

2. g04509046.png ; $y ( \alpha ) = 0$ ; confidence 0.954

3. i051620138.png ; $\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$ ; confidence 0.954

4. t09273032.png ; $M = M _ { 1 } \# M _ { 2 }$ ; confidence 0.954

5. u09523081.png ; $\{ d f _ { n } / d x \}$ ; confidence 0.954

6. d034120183.png ; $H ^ { p + 1 } ( X , F )$ ; confidence 0.954

7. a130050296.png ; $G _ { k , q }$ ; confidence 0.954

8. a11040063.png ; $t \mapsto \pi T ^ { * } ( t ) x ^ { * }$ ; confidence 0.954

9. f04055020.png ; $H _ { F }$ ; confidence 0.954

10. a0111008.png ; $( \alpha , b ) \in A \times A$ ; confidence 0.954

11. a01254016.png ; $D = ( e )$ ; confidence 0.954

12. c02372062.png ; $D \subset \overline { C }$ ; confidence 0.954

13. a0110709.png ; $M _ { 0 } M _ { 1 }$ ; confidence 0.954

14. a01121038.png ; $\sqrt { z }$ ; confidence 0.953

15. a120050105.png ; $\| U ( t , s ) \| _ { X } \leq M e ^ { \beta ( t - s ) } , \quad ( t , s ) \in \Delta$ ; confidence 0.953

16. f04055037.png ; $( n _ { 1 } )$ ; confidence 0.953

17. a12007087.png ; $D _ { A ( 0 ) } ( \delta , \infty )$ ; confidence 0.953

18. c02593049.png ; $d \psi$ ; confidence 0.953

19. a01095065.png ; $\{ x ( t ) , e _ { i } ( t ) \}$ ; confidence 0.953

20. a011380172.png ; $x \& y \& z + x \& y + 1$ ; confidence 0.953

21. d034120563.png ; $f _ { 0 } ( x ) \rightarrow$ ; confidence 0.953

22. b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953

23. d03128063.png ; $s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$ ; confidence 0.953

24. e03708021.png ; $r > n$ ; confidence 0.953

25. h047390181.png ; $V = V ^ { + } \oplus V ^ { - }$ ; confidence 0.953

26. i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953

27. l0602207.png ; $\in \Theta$ ; confidence 0.953

28. l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953

29. t093900154.png ; $g _ { k } = ( 1 + y _ { k } ) / 2$ ; confidence 0.953

30. c12028024.png ; $A \otimes B$ ; confidence 0.953

31. d034120139.png ; $H ^ { n - \gamma - 1 } ( B , X )$ ; confidence 0.953

32. a12013065.png ; $| \theta _ { n + 1 } ^ { * } - \theta _ { n } ^ { * } |$ ; confidence 0.953

33. l058720151.png ; $C _ { 2 } ( \epsilon )$ ; confidence 0.953

34. r07763060.png ; $\chi \in X ( T ) = X ( B )$ ; confidence 0.953

35. d0321705.png ; $x ( t ) , y ( t )$ ; confidence 0.953

36. a11033017.png ; $b \geq 2$ ; confidence 0.953

37. a110040262.png ; $SO ( 4 )$ ; confidence 0.953

38. a110010151.png ; $k ( A ) = \| A \| _ { 2 } \| A ^ { + } \| _ { 2 }$ ; confidence 0.953

39. h047970118.png ; $\mu : A \rightarrow A \otimes A$ ; confidence 0.952

40. n066900114.png ; $Z ^ { 2 } ( G , A )$ ; confidence 0.952

41. a01081052.png ; $i ^ { x }$ ; confidence 0.952

42. h047690125.png ; $n = 7,15$ ; confidence 0.952

43. a1104406.png ; $A \wedge B = \{ \alpha \wedge b : \alpha \in A , b \in B \}$ ; confidence 0.952

44. a130240135.png ; $A$ ; confidence 0.952

45. a110010282.png ; $A _ { i } \in R ^ { n \times n }$ ; confidence 0.952

46. d03070037.png ; $\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.952

47. h0472103.png ; $C$ ; confidence 0.952

48. i05109035.png ; $\Theta$ ; confidence 0.952

49. i05143058.png ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952

50. j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952

51. m06487010.png ; $\xi = x _ { m }$ ; confidence 0.952

52. a01012074.png ; $R > 1$ ; confidence 0.952

53. a011640133.png ; $T _ { V }$ ; confidence 0.952

54. a11016092.png ; $A \rightarrow A - \lambda I$ ; confidence 0.952

55. h0479703.png ; $\mu : A \otimes A \rightarrow A$ ; confidence 0.952

56. s085590373.png ; $x _ { 0 } ^ { \mu + 1 } + x _ { 1 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.952

57. a0107604.png ; $I = \omega x ^ { 2 } + \frac { v ^ { 2 } } { \omega }$ ; confidence 0.951

58. a11010015.png ; $x _ { 0 } \in L$ ; confidence 0.951

59. a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951

60. a11040010.png ; $T ( 0 ) = I$ ; confidence 0.951

61. a120310112.png ; $M ( C ( S ) , \alpha _ { 1 } , G _ { 1 } )$ ; confidence 0.951

62. d030700227.png ; $A ( V ) / GL ( V )$ ; confidence 0.951

63. a0116208.png ; $p = \infty$ ; confidence 0.951

64. s13004021.png ; $\operatorname { Im } ( \gamma z ) > 1$ ; confidence 0.951

65. t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951

66. b01511064.png ; $\mu = \delta _ { X }$ ; confidence 0.951

67. b01587024.png ; $( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$ ; confidence 0.951

68. c02270026.png ; $g : Y \rightarrow Z$ ; confidence 0.951

69. m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951

70. p07401072.png ; $F _ { 5 } ^ { \mu } = C _ { 4 } \cap F _ { 8 } ^ { \mu }$ ; confidence 0.951

71. d034120288.png ; $\{ G _ { n } \}$ ; confidence 0.951

72. a130050292.png ; $P ^ { \# } ( n ) \sim G ^ { \# } ( n )$ ; confidence 0.951

73. j05434026.png ; $C _ { m } ( \lambda )$ ; confidence 0.951

74. r081030106.png ; $\Delta _ { 0 } \cup O _ { \gamma }$ ; confidence 0.951

75. a01417023.png ; $\{ z \in C : \operatorname { Im } z > 0 \}$ ; confidence 0.951

76. a0109305.png ; $\rho \frac { d } { d t } ( \frac { V ^ { 2 } } { 2 } + U ) = \rho ( g , V ) - \operatorname { div } ( p V )$ ; confidence 0.950

77. a01070030.png ; $r \rightarrow r ^ { - 1 }$ ; confidence 0.950

78. a11040014.png ; $t \mapsto T ( t ) x$ ; confidence 0.950

79. a01121080.png ; $x _ { 0 } \leq x \leq b$ ; confidence 0.950

80. l05861049.png ; $SO ( 2 n + 1 )$ ; confidence 0.950

81. a010950135.png ; $T _ { X } ( M ) \rightarrow T _ { X } ( M )$ ; confidence 0.950

82. a01080027.png ; $B ( Z , \Delta T ( X , Y ) ) - B ( \Delta T ( Z , Y ) X ) =$ ; confidence 0.950

83. a13006083.png ; $\overline { H }$ ; confidence 0.950

84. b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950

85. d03101088.png ; $S ^ { 4 k - 1 }$ ; confidence 0.950

86. h12001013.png ; $X ^ { ( r ) } \rightarrow V$ ; confidence 0.950

87. k0558203.png ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950

88. n06708018.png ; $y ^ { * } = \alpha ( g ^ { * } )$ ; confidence 0.950

89. s0919603.png ; $R = \{ \pi ( i ) : \square i \in I \}$ ; confidence 0.950

90. v09638042.png ; $G ^ { k } ( V ) \times V$ ; confidence 0.950

91. a12006063.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.950

92. j05427088.png ; $Kan ^ { - 1 }$ ; confidence 0.950

93. a01105027.png ; $( S _ { \alpha } )$ ; confidence 0.950

94. a13018023.png ; $\Gamma , \Delta \subseteq Fm _ { L }$ ; confidence 0.950

95. a01145030.png ; $D > 0$ ; confidence 0.949

96. a130040800.png ; $g : B \mapsto D$ ; confidence 0.949

97. a11079027.png ; $M \subset G$ ; confidence 0.949

98. b01539050.png ; $\theta = \theta _ { i }$ ; confidence 0.949

99. c11005025.png ; $X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$ ; confidence 0.949

100. c1101705.png ; $D _ { p }$ ; confidence 0.949

101. e035550128.png ; $\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$ ; confidence 0.949

102. t09454051.png ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949

103. a01149059.png ; $P _ { k } ( x _ { 0 } ) \neq 0$ ; confidence 0.949

104. c02333012.png ; $\{ X _ { i } : i \in I \}$ ; confidence 0.949

105. a01121099.png ; $13$ ; confidence 0.949

106. a12005025.png ; $u ( t ) = U ( t , 0 ) u _ { 0 } + \int _ { 0 } ^ { t } U ( t , s ) f ( s ) d s$ ; confidence 0.948

107. a01164096.png ; $2 p _ { g } ( V ) + 1$ ; confidence 0.948

108. a01018056.png ; $A _ { n } = \sum _ { j = 1 } ^ { k } B _ { j } n ^ { s _ { j } } ( \operatorname { ln } n ) ^ { \alpha _ { j } } + O ( n ^ { \beta } )$ ; confidence 0.948

109. a01139029.png ; $\mu ^ { * } \mu = \mu$ ; confidence 0.948

110. a1200405.png ; $x ^ { \prime } ( t ) = A x ( t ) , t > 0 ; \quad x ( 0 ) = x 0$ ; confidence 0.948

111. a1104401.png ; $( \Gamma , \prec )$ ; confidence 0.948

112. t120010101.png ; $Z = G / U ( 1 ) . K$ ; confidence 0.948

113. t12001064.png ; $s ^ { 3 }$ ; confidence 0.948

114. b12014039.png ; $a ( z )$ ; confidence 0.948

115. b0169702.png ; $x ^ { \sigma } = x$ ; confidence 0.948

116. d032130311.png ; $\omega \in \Omega ^ { d } [ X ]$ ; confidence 0.948

117. i050230228.png ; $D _ { j } ^ { l } f \in L _ { p } ( R ^ { n } )$ ; confidence 0.948

118. m06442050.png ; $k = m / 2$ ; confidence 0.948

119. a01174011.png ; $P ^ { x }$ ; confidence 0.948

120. a01417028.png ; $\{ z \rightarrow z + n : n \in Z \}$ ; confidence 0.948

121. i05235023.png ; $n = r = 2$ ; confidence 0.948

122. a0109909.png ; $n = d ^ { 2 } r / d s ^ { 2 }$ ; confidence 0.948

123. a01081063.png ; $U _ { k } ( y ) = 0$ ; confidence 0.948

124. a13007069.png ; $\frac { \sigma ( n ) } { n } > \frac { \sigma ( m ) } { m }$ ; confidence 0.948

125. f040820128.png ; $\gamma ( T ) + F \delta ( T ) = F ( \gamma ( T ) , \delta ( T ) )$ ; confidence 0.948

126. a12012063.png ; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948

127. a13012049.png ; $d = 2$ ; confidence 0.948

128. a011300101.png ; $\overline { \Delta }$ ; confidence 0.947

129. a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947

130. d034120508.png ; $( f , g ) = \sum _ { \alpha } ( f _ { \alpha } , g _ { \alpha } ) _ { \alpha }$ ; confidence 0.947

131. a01024029.png ; $g = 0$ ; confidence 0.947

132. a01137019.png ; $A = L _ { 1 } ( Z )$ ; confidence 0.947

133. a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947

134. a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947

135. a0120907.png ; $\alpha \neq 0$ ; confidence 0.947

136. c0224501.png ; $x ( t ) : R \rightarrow R ^ { n }$ ; confidence 0.947

137. c022780210.png ; $x _ { i } / ( e ^ { x _ { i } } - 1 )$ ; confidence 0.947

138. c024730113.png ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947

139. f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947

140. f04116031.png ; $\alpha = - b$ ; confidence 0.947

141. k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947

142. o06850051.png ; $\sigma \leq t \leq \theta$ ; confidence 0.947

143. r0801808.png ; $t _ { k } \in R$ ; confidence 0.947

144. s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947

145. s085590534.png ; $X \in C ( G )$ ; confidence 0.947

146. d034120161.png ; $H _ { \Phi } ^ { p } ( X , F )$ ; confidence 0.947

147. u09540041.png ; $\sum _ { i = 1 } ^ { j } m _ { i } \geq \sum _ { i = 1 } ^ { j } l _ { i }$ ; confidence 0.947

148. a011650293.png ; $\neg \mathfrak { F }$ ; confidence 0.947

149. a01012021.png ; $l ( n )$ ; confidence 0.947

150. a11040052.png ; $\lambda \in \varrho ( A )$ ; confidence 0.947

151. a11032025.png ; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.946

152. a130180117.png ; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946

153. a0106703.png ; $y \in Y$ ; confidence 0.946

154. l05868027.png ; $\Gamma _ { 0 } = \Gamma _ { 0 } ( \mathfrak { g } )$ ; confidence 0.946

155. w120090344.png ; $\beta \in \Sigma$ ; confidence 0.946

156. c02333013.png ; $\prod _ { i \in I } X _ { i } \rightarrow Y$ ; confidence 0.946

157. t130130105.png ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946

158. p07471027.png ; $C ^ { G }$ ; confidence 0.946

159. a01146097.png ; $( X ) \cap C ^ { 1 } ( X )$ ; confidence 0.946

160. a13014020.png ; $R ^ { 3 }$ ; confidence 0.946

161. t12001029.png ; $C ( S )$ ; confidence 0.946

162. a130240218.png ; $z = \Gamma y$ ; confidence 0.946

163. b0153803.png ; $A _ { i } \Gamma \cap A _ { j } = \emptyset$ ; confidence 0.946

164. i050030120.png ; $A \backslash I$ ; confidence 0.946

165. i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946

166. t093900196.png ; $T _ { 23 } n ( \operatorname { cos } \pi \omega )$ ; confidence 0.946

167. v0963509.png ; $( a + b ) + c = a + ( b + c )$ ; confidence 0.946

168. a11037026.png ; $\{ X _ { k } ^ { - } : k \geq 1 \}$ ; confidence 0.946

169. a13025024.png ; $i = 1,2$ ; confidence 0.946

170. a1103402.png ; $y ( . )$ ; confidence 0.946

171. a12017012.png ; $\Pi ( \alpha ) = \operatorname { exp } ( - \int _ { 0 } ^ { \alpha } \mu ( \sigma ) d \sigma )$ ; confidence 0.946

172. a110680253.png ; $R = Z$ ; confidence 0.945

173. r08137020.png ; $\{ \rho ^ { \alpha } \}$ ; confidence 0.945

174. a01068036.png ; $A _ { 1 } = \ldots = A _ { k } = A$ ; confidence 0.945

175. c02157039.png ; $L _ { 2 } ( G )$ ; confidence 0.945

176. a130240417.png ; $( n - r ) ^ { - 1 } M _ { E }$ ; confidence 0.945

177. a130240213.png ; $7$ ; confidence 0.945

178. b01539052.png ; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945

179. b130300112.png ; $F _ { m }$ ; confidence 0.945

180. c11050032.png ; $H C ^ { 0 } ( A )$ ; confidence 0.945

181. d03289066.png ; $s = - 2 \nu - \delta$ ; confidence 0.945

182. m064430225.png ; $\operatorname { lm } A ( \tau )$ ; confidence 0.945

183. n06648031.png ; $\phi _ { \alpha } ( f ) = w _ { \alpha }$ ; confidence 0.945

184. p07309060.png ; $R \times D$ ; confidence 0.945

185. a01012063.png ; $f ^ { ( n ) } ( \lambda _ { n } ) = 0$ ; confidence 0.945

186. a13007092.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945

187. a1201507.png ; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945

188. l05851037.png ; $\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ ; confidence 0.945

189. a12013037.png ; $h ( \theta ) = E _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945

190. a13008057.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.945

191. a12006058.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945

192. a130050151.png ; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }$ ; confidence 0.945

193. a110010163.png ; $( A ) = n < m$ ; confidence 0.944

194. a01082030.png ; $F - G$ ; confidence 0.944

195. a110010167.png ; $\operatorname { rank } ( A ) = m = n$ ; confidence 0.944

196. a13007045.png ; $d < n$ ; confidence 0.944

197. u09541037.png ; $U _ { 2 } ( K )$ ; confidence 0.944

198. a010950130.png ; $\frac { d ^ { 2 } x ^ { i } } { d t ^ { 2 } } + \Gamma _ { j k } ^ { i } \frac { d x ^ { j } } { d t } \frac { d x ^ { k } } { d t } = 0$ ; confidence 0.944

199. a110010248.png ; $x ^ { ( i ) } \rightarrow x$ ; confidence 0.944

200. c12002073.png ; $R ^ { k }$ ; confidence 0.944

201. b12001032.png ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944

202. c02485065.png ; $A . B$ ; confidence 0.944

203. h048420118.png ; $F _ { j } ( z ) = \sum _ { k = 1 } ^ { N } G _ { j k } ( z )$ ; confidence 0.944

204. k11007019.png ; $- w _ { 0 } ( \chi )$ ; confidence 0.944

205. l05715026.png ; $\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$ ; confidence 0.944

206. w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944

207. b01566013.png ; $X$ ; confidence 0.944

208. b11004012.png ; $\theta _ { 0 }$ ; confidence 0.944

209. b01695036.png ; $q - 1$ ; confidence 0.944

210. a11010062.png ; $W = \{ 1 \}$ ; confidence 0.944

211. b11096050.png ; $G ( K )$ ; confidence 0.944

212. a01068034.png ; $d ( A _ { i } ) = \operatorname { inf } _ { n } A _ { i } ( n ) / n$ ; confidence 0.944

213. d030700190.png ; $\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ ; confidence 0.944

214. q07631093.png ; $( A _ { j } )$ ; confidence 0.944

215. a120160129.png ; $W E$ ; confidence 0.943

216. a01164076.png ; $H ^ { p } ( V , \Omega ^ { q } ) = \operatorname { dim } H ^ { q } ( V , \Omega ^ { p } )$ ; confidence 0.943

217. a1100707.png ; $c > 0$ ; confidence 0.943

218. a12006035.png ; $u ( 0 ) = u _ { 0 } \in D ( A ) , f \in C ( [ 0 , T ] ; D ( A ) )$ ; confidence 0.943

219. a0107006.png ; $r : A \rightarrow B$ ; confidence 0.943

220. a110420120.png ; $y \in G ^ { + }$ ; confidence 0.943

221. e03581038.png ; $\Phi \Psi$ ; confidence 0.943

222. f04061036.png ; $C ^ { b r } ( E ^ { n } )$ ; confidence 0.943

223. q07643044.png ; $f \in W _ { 2 } ^ { 1 }$ ; confidence 0.943

224. c13005045.png ; $( G )$ ; confidence 0.943

225. a11042084.png ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943

226. a0125405.png ; $S \subset G$ ; confidence 0.943

227. d0332802.png ; $y \in X$ ; confidence 0.943

228. d034120178.png ; $H _ { c } ^ { n } ( X , \Omega )$ ; confidence 0.942

229. p07304033.png ; $X$ ; confidence 0.942

230. a130240228.png ; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942

231. e03696090.png ; $c \in F \{ ( y _ { j } ) _ { j \in J } \}$ ; confidence 0.942

232. a12010072.png ; $\partial \phi$ ; confidence 0.942

233. a12012060.png ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}$ ; confidence 0.942

234. t12001075.png ; $s ^ { 2 }$ ; confidence 0.942

235. f04039064.png ; $y ^ { i } C _ { i j k } = 0$ ; confidence 0.942

236. s087450112.png ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942

237. w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942

238. a1201103.png ; $\varphi ( \alpha , 0,1 ) = 0 , \varphi ( \alpha , 0,2 ) = 1$ ; confidence 0.942

239. d031830297.png ; $= \partial A / \partial u _ { A }$ ; confidence 0.942

240. t13014066.png ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942

241. a130040266.png ; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942

242. a130040242.png ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942

243. l058720119.png ; $S _ { n } = n ( p ^ { n + 1 } - 1 )$ ; confidence 0.942

244. a11010034.png ; $T _ { n } ( f )$ ; confidence 0.942

245. s085590410.png ; $\pi : X \rightarrow X$ ; confidence 0.941

246. r08123020.png ; $f ( z ) =$ ; confidence 0.941

247. a11033037.png ; $\frac { 1.20 } { \sqrt { b } }$ ; confidence 0.941

248. a01121011.png ; $w _ { 1 } ( z ) = 2 e ^ { i \pi / 6 } v ( \omega z )$ ; confidence 0.941

249. s085590362.png ; $H _ { n } ( X _ { \epsilon } , Z )$ ; confidence 0.941

250. d031280173.png ; $R ^ { i } F = H ^ { i } \circ R ^ { * } F$ ; confidence 0.941

251. h1102204.png ; $h : E ^ { m } \rightarrow R$ ; confidence 0.941

252. m120120128.png ; $C = Z ( Q )$ ; confidence 0.941

253. r08250029.png ; $u _ { 0 } = A ^ { - 1 } f$ ; confidence 0.941

254. s11004082.png ; $\phi ( T _ { X } N ) \subset T _ { X } N$ ; confidence 0.941

255. a13007099.png ; $n ^ { 10 }$ ; confidence 0.941

256. b01695087.png ; $R ( G )$ ; confidence 0.941

257. a01018048.png ; $A _ { x } = n$ ; confidence 0.941

258. s08559089.png ; $\{ M \}$ ; confidence 0.941

259. a13007082.png ; $H ( x )$ ; confidence 0.941

260. a11022096.png ; $\{ R ( f \circ \pi _ { n } ) \}$ ; confidence 0.941

261. f040820159.png ; $\mathfrak { m } = ( \pi )$ ; confidence 0.941

262. a01417066.png ; $x _ { 0 } \in \partial X$ ; confidence 0.941

263. b12004090.png ; $f ^ { * }$ ; confidence 0.941

264. a130240546.png ; $7$ ; confidence 0.941

265. a12007074.png ; $K _ { 2 } > 0$ ; confidence 0.941

266. a11041047.png ; $L ^ { \prime } = ( \pi * L ) ^ { * * }$ ; confidence 0.941

267. a01130049.png ; $\gamma _ { \nu } ( x _ { i } ) = 1$ ; confidence 0.940

268. a12018014.png ; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940

269. a01081046.png ; $C ( I )$ ; confidence 0.940

270. s08559054.png ; $\tau _ { 2 } - \epsilon < \tau ^ { \prime \prime } < \tau _ { 2 }$ ; confidence 0.940

271. t13014042.png ; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940

272. a01076032.png ; $v _ { \perp } ^ { 2 } / H$ ; confidence 0.940

273. a130040802.png ; $g \circ h = f$ ; confidence 0.940

274. s085590407.png ; $1 / n 1$ ; confidence 0.940

275. a13008047.png ; $+ \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }$ ; confidence 0.940

276. t12001034.png ; $SO ( 3 )$ ; confidence 0.940

277. f04008010.png ; $F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$ ; confidence 0.940

278. n067860258.png ; $V \subset \rho U$ ; confidence 0.940

279. s13004033.png ; $G = \operatorname { Sp } ( 2 g , R )$ ; confidence 0.940

280. a01165068.png ; $B = \langle B , O ^ { \prime } , R ^ { \prime } \rangle$ ; confidence 0.940

281. a12006032.png ; $u \in C ( [ 0 , T ] ; D ( A ) ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.940

282. a12020054.png ; $P _ { j } = \mathfrak { p } _ { j } ( T )$ ; confidence 0.940

283. a01130040.png ; $A _ { \mu }$ ; confidence 0.940

284. a01150040.png ; $F ( m ) = \sum \alpha _ { j k } m _ { j } m _ { k } , \quad \alpha _ { j k } = \alpha _ { k j }$ ; confidence 0.940

285. a12008044.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.940

286. a011380184.png ; $f _ { 5 }$ ; confidence 0.940

287. b12053030.png ; $f _ { n } \rightarrow f$ ; confidence 0.940

288. a130240465.png ; $( f ( t _ { 1 } ) , \ldots , f ( t _ { p } ) )$ ; confidence 0.940

289. a130070112.png ; $\operatorname { limsup } _ { n \rightarrow \infty , n \in U _ { \alpha } } \frac { \sigma ^ { * } ( n ) } { n } = \alpha$ ; confidence 0.939

290. a01138051.png ; $x \sim y = ( x \& y ) \vee ( x \& \overline { y } )$ ; confidence 0.939

291. a01165046.png ; $A ^ { \prime }$ ; confidence 0.939

292. s085590350.png ; $X _ { S } \rightarrow X _ { S }$ ; confidence 0.939

293. s085590510.png ; $x _ { 0 } \in G \backslash H$ ; confidence 0.939

294. q076310148.png ; $z _ { \gamma } \in A$ ; confidence 0.939

295. c02411026.png ; $d = ( d _ { n } )$ ; confidence 0.939

296. i05077064.png ; $A = \operatorname { lim } _ { \rightarrow } F ( D )$ ; confidence 0.939

297. s12026061.png ; $\partial _ { s }$ ; confidence 0.939

298. c02347035.png ; $\mu ( g )$ ; confidence 0.939

299. a011480100.png ; $d ( x )$ ; confidence 0.939

300. a01052053.png ; $1$ ; confidence 0.939

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/13. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/13&oldid=43941