Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/7

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 22:15, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 7 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. e03579057.png ; $\sum _ { n } ^ { - 1 }$ ; confidence 0.820

2. c02646028.png ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819

3. q07681026.png ; $\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$ ; confidence 0.819

4. c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818

5. c02643058.png ; $F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$ ; confidence 0.818

6. d0338502.png ; $x \square ^ { j }$ ; confidence 0.818

7. i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817

8. l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817

9. r08194033.png ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.817

10. a01243088.png ; $f$ ; confidence 0.816

11. b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816

12. s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815

13. a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814

14. n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814

15. s08521047.png ; $q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$ ; confidence 0.814

16. f12009069.png ; $F \mu$ ; confidence 0.813

17. i05091079.png ; $Y _ { n k }$ ; confidence 0.813

18. p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812

19. r07738071.png ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.812

20. t12001035.png ; $SU ( 2 )$ ; confidence 0.811

21. m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811

22. q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811

23. r08116074.png ; $t + \tau$ ; confidence 0.811

24. a01162010.png ; $f ( x ) - P _ { n } ^ { 0 } ( x )$ ; confidence 0.810

25. i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810

26. b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809

27. d1100407.png ; $S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$ ; confidence 0.809

28. d03154015.png ; $G r$ ; confidence 0.809

29. q07632017.png ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.809

30. h047930299.png ; $Z / p$ ; confidence 0.808

31. s087280193.png ; $m = E X ( s )$ ; confidence 0.808

32. r11004022.png ; $k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$ ; confidence 0.807

33. r08143031.png ; $E / E ^ { \prime }$ ; confidence 0.807

34. n06649018.png ; $f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$ ; confidence 0.806

35. a110680200.png ; $r$ ; confidence 0.805

36. a014140121.png ; $\sigma ( 1 ) = s$ ; confidence 0.805

37. d130080108.png ; $F \in Hol ( D )$ ; confidence 0.805

38. q07680012.png ; $T ^ { S }$ ; confidence 0.805

39. q07686069.png ; $f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$ ; confidence 0.805

40. r11015028.png ; $M \dot { y } = f ( y )$ ; confidence 0.805

41. a13013016.png ; $8$ ; confidence 0.804

42. d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804

43. c02104057.png ; $- u _ { 3 }$ ; confidence 0.803

44. e03677058.png ; $P ^ { \prime } ( C )$ ; confidence 0.802

45. l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802

46. p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802

47. q07604075.png ; $\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$ ; confidence 0.802

48. q07680048.png ; $\leq \nu _ { i } ^ { s }$ ; confidence 0.802

49. l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801

50. p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801

51. c02016022.png ; $K _ { X } K _ { X }$ ; confidence 0.800

52. c022780429.png ; $\phi ^ { h } ( pt )$ ; confidence 0.800

53. f03838022.png ; $C _ { 0 }$ ; confidence 0.800

54. s087820182.png ; $\| y \| = \operatorname { max } _ { i } | y _ { i } |$ ; confidence 0.800

55. t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799

56. c02601042.png ; $N = N _ { 0 }$ ; confidence 0.799

57. l058360142.png ; $P _ { 8 }$ ; confidence 0.799

58. n06731043.png ; $B O$ ; confidence 0.799

59. w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799

60. t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798

61. c02161069.png ; $\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$ ; confidence 0.798

62. g13003022.png ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798

63. h04630075.png ; $M _ { 0 } \times I$ ; confidence 0.798

64. a012970176.png ; $d _ { 2 n - 1 } = d _ { 2 n }$ ; confidence 0.797

65. b13020048.png ; $\alpha _ { i j } \neq 0$ ; confidence 0.797

66. d03249026.png ; $G$ ; confidence 0.797

67. y11001038.png ; $\| \phi _ { q } \| _ { q } = 1$ ; confidence 0.797

68. b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796

69. m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796

70. a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795

71. l05745021.png ; $v \in C ( \overline { G } )$ ; confidence 0.795

72. m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795

73. p11023076.png ; $x \in R ^ { + }$ ; confidence 0.795

74. s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795

75. a110220112.png ; $\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$ ; confidence 0.794

76. d031830278.png ; $u \leq \theta u$ ; confidence 0.794

77. o0681907.png ; $T ( t ) x$ ; confidence 0.794

78. q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794

79. r08062044.png ; $X = \| x _ { i } \|$ ; confidence 0.794

80. y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794

81. a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793

82. a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793

83. c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793

84. h04794088.png ; $e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$ ; confidence 0.793

85. g044350116.png ; $V ( \Re ) > 2 ^ { n } d ( \Lambda )$ ; confidence 0.792

86. t09389045.png ; $o ( N ) / N \rightarrow 0$ ; confidence 0.792

87. a11028064.png ; $\chi ( G ) < \operatorname { girth } ( G )$ ; confidence 0.791

88. h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791

89. t09326056.png ; $d \Phi$ ; confidence 0.791

90. a130240453.png ; $q = 1$ ; confidence 0.790

91. t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790

92. e03566053.png ; $c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$ ; confidence 0.789

93. c0256402.png ; $\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$ ; confidence 0.788

94. a110420158.png ; $A _ { \theta }$ ; confidence 0.786

95. d0316809.png ; $\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$ ; confidence 0.786

96. p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786

97. s0902702.png ; $\alpha < t < b$ ; confidence 0.786

98. y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786

99. b01539032.png ; $d ^ { x }$ ; confidence 0.785

100. b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784

101. d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784

102. r110010322.png ; $j$ ; confidence 0.784

103. s08755022.png ; $\alpha \leq p b$ ; confidence 0.784

104. a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783

105. a120310159.png ; $\Omega$ ; confidence 0.783

106. a11016079.png ; $[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$ ; confidence 0.783

107. a0121604.png ; $\phi = \operatorname { am } z$ ; confidence 0.783

108. r08125011.png ; $H ( t ) = E N$ ; confidence 0.783

109. v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783

110. t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782

111. a110420138.png ; $I \mapsto I$ ; confidence 0.782

112. t09316047.png ; $p _ { 1 } \otimes \sim p _ { 2 }$ ; confidence 0.782

113. i05095025.png ; $= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$ ; confidence 0.781

114. a130240147.png ; $\mu$ ; confidence 0.780

115. a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779

116. a01178016.png ; $b a P$ ; confidence 0.779

117. t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779

118. m06455029.png ; $G \rightarrow R _ { + } ^ { * }$ ; confidence 0.778

119. a130240248.png ; $( q , n - r )$ ; confidence 0.777

120. b11061011.png ; $K ^ { * }$ ; confidence 0.777

121. f04212073.png ; $\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$ ; confidence 0.777

122. n06634090.png ; $x \in V _ { n }$ ; confidence 0.777

123. r08093013.png ; $\overline { A } z = \overline { u }$ ; confidence 0.777

124. c02315068.png ; $\square ^ { 1 } P ^ { i } = P$ ; confidence 0.776

125. l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776

126. m062620198.png ; $z \square ^ { ( s ) }$ ; confidence 0.776

127. c02278060.png ; $B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$ ; confidence 0.775

128. i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775

129. q076250144.png ; $x \in E _ { + } ( s )$ ; confidence 0.775

130. r082050121.png ; $AH _ { p }$ ; confidence 0.775

131. b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774

132. a011600163.png ; $1 \leq h _ { m } \leq h . \phi ( m )$ ; confidence 0.774

133. r1301601.png ; $c ^ { \infty } ( \Omega ) ^ { N }$ ; confidence 0.774

134. l05817023.png ; $\{ i _ { k } \}$ ; confidence 0.773

135. r13016037.png ; $c ^ { m } ( \Omega )$ ; confidence 0.773

136. s09072010.png ; $a \neq a _ { 0 }$ ; confidence 0.773

137. a110420123.png ; $\pi$ ; confidence 0.772

138. i11006083.png ; $H \equiv L \circ K$ ; confidence 0.769

139. m065140117.png ; $p _ { 1 } + \ldots + p _ { m } = p$ ; confidence 0.769

140. h04747031.png ; $F ^ { p }$ ; confidence 0.768

141. k0556604.png ; $f ( z ) = z + \ldots$ ; confidence 0.768

142. m13002029.png ; $A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$ ; confidence 0.768

143. v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768

144. e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$ ; confidence 0.766

145. i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766

146. n067850131.png ; $u = \operatorname { tr } \Gamma ( u )$ ; confidence 0.766

147. s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766

148. f04058066.png ; $| A | = \int _ { R } | \alpha | 0$ ; confidence 0.765

149. t09386023.png ; $P ( S )$ ; confidence 0.765

150. c11029014.png ; $Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.764

151. c02412032.png ; $\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$ ; confidence 0.764

152. c120180152.png ; $\gamma$ ; confidence 0.764

153. f041890119.png ; $x \in R \cup \{ \infty \}$ ; confidence 0.764

154. t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763

155. c12026044.png ; $1 \leq n \leq N$ ; confidence 0.763

156. h04761062.png ; $\mathfrak { M } ( M )$ ; confidence 0.763

157. s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763

158. t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761

159. c025420100.png ; $\neg \neg \exists x R \supset \exists x R$ ; confidence 0.760

160. c027480106.png ; $\Sigma _ { S }$ ; confidence 0.760

161. f040820173.png ; $F ( \overline { m } )$ ; confidence 0.760

162. a12022010.png ; $X = c 0$ ; confidence 0.759

163. b1100902.png ; $l ^ { \infty } ( N )$ ; confidence 0.759

164. e03623076.png ; $2 d \geq n$ ; confidence 0.758

165. i050730155.png ; $\nu _ { S }$ ; confidence 0.758

166. a011820124.png ; $M \times N$ ; confidence 0.757

167. h04831085.png ; $\alpha = a ( x )$ ; confidence 0.757

168. l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756

169. a01367016.png ; $J _ { \nu } ( x ) \sim \sqrt { \frac { 2 } { \pi x } } [ \operatorname { cos } ( x - \frac { \pi \nu } { 2 } - \frac { \pi } { 4 } ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \alpha _ { 2 n } x ^ { - 2 n }$ ; confidence 0.755

170. p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755

171. p07302077.png ; $L ( R ) \otimes _ { K } H _ { n } ( R ) = R$ ; confidence 0.755

172. s08579085.png ; $\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$ ; confidence 0.755

173. a0101207.png ; $\sum _ { n = 0 } ^ { \infty } f ^ { ( n ) } ( \lambda _ { n } ) P _ { n } ( z )$ ; confidence 0.754

174. a0136709.png ; $f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$ ; confidence 0.754

175. d03248013.png ; $d ( I ^ { n } ) = n$ ; confidence 0.754

176. h046420330.png ; $B = B _ { E }$ ; confidence 0.754

177. s086940134.png ; $0 \leq \omega \leq \infty$ ; confidence 0.754

178. c11043040.png ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.753

179. j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753

180. s08782061.png ; $\alpha _ { 1 } = - 3$ ; confidence 0.753

181. b017330240.png ; $B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$ ; confidence 0.752

182. d03175013.png ; $\overline { G } = G + \Gamma$ ; confidence 0.752

183. m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752

184. s09196011.png ; $\{ \pi ( i ) : \square i \in I _ { 0 } \}$ ; confidence 0.752

185. a130240101.png ; $x$ ; confidence 0.751

186. h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751

187. a12022021.png ; $T$ ; confidence 0.750

188. c02311056.png ; $A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$ ; confidence 0.750

189. f040850279.png ; $V _ { 1 } ^ { * }$ ; confidence 0.750

190. c02416048.png ; $O _ { A } = O _ { D } / J | _ { A }$ ; confidence 0.748

191. e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748

192. p07398067.png ; $F \otimes S ^ { m } E$ ; confidence 0.748

193. b01673033.png ; $r ^ { 3 } / v \ll 1$ ; confidence 0.747

194. c02014016.png ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747

195. v13011059.png ; $2 i$ ; confidence 0.747

196. p0746603.png ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.746

197. a11042053.png ; $K _ { 0 } ( A )$ ; confidence 0.745

198. b01729066.png ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745

199. c02293015.png ; $u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$ ; confidence 0.744

200. b017330250.png ; $U ^ { N }$ ; confidence 0.743

201. f041940175.png ; $S \subset T$ ; confidence 0.743

202. g0453708.png ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.743

203. m12011082.png ; $\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$ ; confidence 0.743

204. p07474068.png ; $q _ { i } R = 0$ ; confidence 0.743

205. t1200109.png ; $1$ ; confidence 0.742

206. f11018097.png ; $\| x \| _ { p } = \int _ { 0 } ^ { 1 } | x ( t ) | ^ { p } d t$ ; confidence 0.742

207. m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742

208. t09377067.png ; $\mathfrak { A } f$ ; confidence 0.742

209. e03640030.png ; $2 - 2 g - l$ ; confidence 0.741

210. r0811301.png ; $c \approx 3.10 ^ { 10 } cm / se$ ; confidence 0.741

211. a130240444.png ; $N$ ; confidence 0.740

212. n06708019.png ; $y ( 0 ) = y ^ { \prime }$ ; confidence 0.740

213. s0901802.png ; $\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$ ; confidence 0.740

214. a012430100.png ; $I Y \subset O$ ; confidence 0.739

215. b11089088.png ; $\alpha ^ { i }$ ; confidence 0.739

216. f1200101.png ; $S h$ ; confidence 0.739

217. n06790027.png ; $\alpha + b = b + \alpha$ ; confidence 0.739

218. a110420169.png ; $K$ ; confidence 0.738

219. a130240485.png ; $B$ ; confidence 0.738

220. a130240219.png ; $I$ ; confidence 0.738

221. e11003020.png ; $f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$ ; confidence 0.738

222. l0576408.png ; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738

223. m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738

224. o07007051.png ; $W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$ ; confidence 0.738

225. a11042091.png ; $x \in G$ ; confidence 0.737

226. b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737

227. i05023059.png ; $1 < m \leq n$ ; confidence 0.737

228. r08213015.png ; $\partial x ^ { i } / \partial v$ ; confidence 0.737

229. b01539030.png ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736

230. l05718018.png ; $x g$ ; confidence 0.734

231. m12025047.png ; $L C ^ { k - 1 }$ ; confidence 0.734

232. t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734

233. e03536090.png ; $\operatorname { Th } ( K _ { 1 } )$ ; confidence 0.733

234. f040820110.png ; $f _ { i } ( X ) = X _ { i } + \ldots$ ; confidence 0.733

235. e0355309.png ; $\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$ ; confidence 0.732

236. a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731

237. m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731

238. m06495010.png ; $V _ { 1 } = \emptyset$ ; confidence 0.731

239. r08245049.png ; $( \alpha b ) \alpha = \alpha ( b \alpha )$ ; confidence 0.731

240. q07661012.png ; $N _ { A }$ ; confidence 0.730

241. a01024027.png ; $2$ ; confidence 0.729

242. c023250187.png ; $[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$ ; confidence 0.729

243. a130240524.png ; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727

244. a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726

245. p07253081.png ; $d f ^ { j }$ ; confidence 0.726

246. l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725

247. b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724

248. b0175307.png ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724

249. c0245107.png ; $P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$ ; confidence 0.724

250. m13025065.png ; $M _ { 3 } ( R ^ { n } ) = \{$ ; confidence 0.724

251. q07684029.png ; $P \{ X _ { n } \in \Delta \} \rightarrow 0$ ; confidence 0.724

252. i12006014.png ; $x < \varrho y$ ; confidence 0.723

253. z11001018.png ; $( f g f h )$ ; confidence 0.723

254. b01566081.png ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722

255. a01130060.png ; $\gamma m$ ; confidence 0.719

256. b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719

257. s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719

258. c02721040.png ; $P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$ ; confidence 0.718

259. j05425028.png ; $K ^ { * }$ ; confidence 0.718

260. b11076042.png ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717

261. t09465066.png ; $\in M$ ; confidence 0.717

262. a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716

263. l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716

264. q076820110.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$ ; confidence 0.716

265. r07738036.png ; $u _ { 0 } = 1$ ; confidence 0.716

266. a11042086.png ; $z \in G$ ; confidence 0.715

267. b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714

268. s08652091.png ; $| T | _ { p }$ ; confidence 0.714

269. d03002056.png ; $D x$ ; confidence 0.713

270. l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712

271. w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712

272. a13013091.png ; $L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.711

273. a13024039.png ; $p \times p$ ; confidence 0.711

274. d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711

275. l05877073.png ; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711

276. n06708029.png ; $\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$ ; confidence 0.711

277. b01539031.png ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710

278. a130240362.png ; $22$ ; confidence 0.710

279. t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710

280. t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710

281. l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709

282. s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709

283. a011640155.png ; $p _ { g } \neq 1$ ; confidence 0.708

284. l05861083.png ; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708

285. e037040161.png ; $A = A _ { 0 } ^ { * }$ ; confidence 0.706

286. n06641020.png ; $x \in b M$ ; confidence 0.705

287. l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704

288. m062490165.png ; $\Lambda = \{ \omega : x _ { S } \in B \}$ ; confidence 0.703

289. t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702

290. d03316011.png ; $\sigma _ { i } ^ { z }$ ; confidence 0.702

291. f0412109.png ; $A / \eta$ ; confidence 0.702

292. k0557001.png ; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702

293. a011210114.png ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.701

294. a11042092.png ; $x > 0$ ; confidence 0.700

295. a01234035.png ; $a \in V$ ; confidence 0.699

296. l0580808.png ; $B \subset X ^ { * }$ ; confidence 0.699

297. t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699

298. n06740041.png ; $U$ ; confidence 0.698

299. p0738804.png ; $x _ { 1 } = \ldots = x _ { n } = 0$ ; confidence 0.697

300. s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/7. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/7&oldid=43857