User:Maximilian Janisch/latexlist/latex/6
List
1. ; $x , y \in A$ ; confidence 0.906
2. ; $SO ( 4 n + 3 )$ ; confidence 0.906
3. ; $20$ ; confidence 0.906
4. ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906
5. ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906
6. ; $x \in D ( A )$ ; confidence 0.906
7. ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906
8. ; $\mathfrak { A } ^ { - }$ ; confidence 0.906
9. ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906
10. ; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906
11. ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906
12. ; $\alpha$ ; confidence 0.905
13. ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905
14. ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905
15. ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905
16. ; $V \cap L$ ; confidence 0.905
17. ; $\oplus R ( S _ { n } )$ ; confidence 0.905
18. ; $w = \operatorname { sin }$ ; confidence 0.905
19. ; $0 \notin f ( \partial D )$ ; confidence 0.904
20. ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904
21. ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904
22. ; $p ( \alpha )$ ; confidence 0.904
23. ; $\alpha \geq A _ { 0 }$ ; confidence 0.904
24. ; $h ^ { * } ( pt )$ ; confidence 0.903
25. ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903
26. ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903
27. ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903
28. ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903
29. ; $\hat { \eta } \Omega$ ; confidence 0.902
30. ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902
31. ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901
32. ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901
33. ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901
34. ; $N > 5$ ; confidence 0.901
35. ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900
36. ; $\delta _ { i k } = 0$ ; confidence 0.900
37. ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900
38. ; $T p ( A _ { y } ) = A$ ; confidence 0.900
39. ; $3$ ; confidence 0.899
40. ; $\pi _ { k } ( x )$ ; confidence 0.899
41. ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899
42. ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899
43. ; $x$ ; confidence 0.899
44. ; $q$ ; confidence 0.899
45. ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898
46. ; $f \in H _ { c } ( D )$ ; confidence 0.898
47. ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898
48. ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898
49. ; $S \square T$ ; confidence 0.898
50. ; $1$ ; confidence 0.897
51. ; $\Lambda _ { G } = 1$ ; confidence 0.897
52. ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897
53. ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
54. ; $\overline { \rho } _ { L }$ ; confidence 0.896
55. ; $\operatorname { det } S \neq 0$ ; confidence 0.896
56. ; $B$ ; confidence 0.895
57. ; $t$ ; confidence 0.895
58. ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
59. ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895
60. ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895
61. ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895
62. ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895
63. ; $X \in \Phi$ ; confidence 0.895
64. ; $Y$ ; confidence 0.894
65. ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894
66. ; $\exists x A$ ; confidence 0.894
67. ; $D ^ { \perp }$ ; confidence 0.893
68. ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893
69. ; $\Omega$ ; confidence 0.892
70. ; $q = p ^ { r }$ ; confidence 0.892
71. ; $L \mapsto E ( L )$ ; confidence 0.892
72. ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892
73. ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892
74. ; $\tau \cup A C \cup B C$ ; confidence 0.892
75. ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892
76. ; $3$ ; confidence 0.891
77. ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
78. ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
79. ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
80. ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
81. ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889
82. ; $i$ ; confidence 0.889
83. ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889
84. ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889
85. ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887
86. ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887
87. ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
88. ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887
89. ; $\tau _ { j } < 0$ ; confidence 0.887
90. ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
91. ; $( i i + 1 )$ ; confidence 0.886
92. ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886
93. ; $P _ { n } ( R )$ ; confidence 0.886
94. ; $n \geq 12$ ; confidence 0.886
95. ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885
96. ; $5$ ; confidence 0.885
97. ; $t \subset v$ ; confidence 0.885
98. ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
99. ; $\Gamma = B X$ ; confidence 0.884
100. ; $MS _ { e }$ ; confidence 0.884
101. ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884
102. ; $T ( M )$ ; confidence 0.884
103. ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
104. ; $H _ { n - 2 }$ ; confidence 0.883
105. ; $e ^ { x _ { i } } - 1$ ; confidence 0.882
106. ; $\Gamma ( C ) = V$ ; confidence 0.882
107. ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882
108. ; $\epsilon$ ; confidence 0.882
109. ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
110. ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881
111. ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881
112. ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881
113. ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
114. ; $i , j = 1,2$ ; confidence 0.881
115. ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
116. ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
117. ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
118. ; $H \phi$ ; confidence 0.878
119. ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878
120. ; $| w | < 1 / 16$ ; confidence 0.877
121. ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877
122. ; $B O$ ; confidence 0.877
123. ; $d j \neq 0$ ; confidence 0.877
124. ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876
125. ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
126. ; $( K / k )$ ; confidence 0.875
127. ; $z _ { k } \in L$ ; confidence 0.875
128. ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
129. ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
130. ; $\operatorname { inv } ( x )$ ; confidence 0.875
131. ; $g _ { n } ( \Omega )$ ; confidence 0.875
132. ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
133. ; $c = 0$ ; confidence 0.874
134. ; $| w | = \rho < 1$ ; confidence 0.874
135. ; $y _ { i j k }$ ; confidence 0.873
136. ; $L _ { p } ( E )$ ; confidence 0.872
137. ; $S \cap R ( G ) = ( e )$ ; confidence 0.872
138. ; $m = 2 i + 1$ ; confidence 0.871
139. ; $P ^ { \prime }$ ; confidence 0.871
140. ; $Y = C$ ; confidence 0.871
141. ; $M _ { A g }$ ; confidence 0.870
142. ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
143. ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870
144. ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870
145. ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
146. ; $P ^ { ( l ) }$ ; confidence 0.869
147. ; $H _ { m }$ ; confidence 0.869
148. ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869
149. ; $Y \times X$ ; confidence 0.869
150. ; $S$ ; confidence 0.868
151. ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868
152. ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868
153. ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867
154. ; $M N$ ; confidence 0.867
155. ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867
156. ; $C ^ { * }$ ; confidence 0.866
157. ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
158. ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866
159. ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866
160. ; $y _ { j } \delta \theta$ ; confidence 0.866
161. ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866
162. ; $O ( r )$ ; confidence 0.866
163. ; $\int \int K d S$ ; confidence 0.865
164. ; $\sigma ^ { 2 }$ ; confidence 0.864
165. ; $\Theta f$ ; confidence 0.864
166. ; $\infty \rightarrow \alpha / c$ ; confidence 0.864
167. ; $F \mapsto F ( P )$ ; confidence 0.864
168. ; $L \subset Z ^ { 0 }$ ; confidence 0.864
169. ; $\Pi ^ { * } \in C$ ; confidence 0.864
170. ; $g = R ^ { \alpha } f$ ; confidence 0.864
171. ; $T : X \rightarrow Y$ ; confidence 0.863
172. ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
173. ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863
174. ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863
175. ; $\operatorname { arg } f$ ; confidence 0.862
176. ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
177. ; $F ^ { k }$ ; confidence 0.862
178. ; $r _ { 2 } \in R$ ; confidence 0.862
179. ; $e X$ ; confidence 0.861
180. ; $E _ { 8 }$ ; confidence 0.860
181. ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860
182. ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860
183. ; $L ] = \lambda$ ; confidence 0.859
184. ; $n = p$ ; confidence 0.858
185. ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858
186. ; $\varphi$ ; confidence 0.858
187. ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858
188. ; $j 2 ^ { - k - l }$ ; confidence 0.858
189. ; $8$ ; confidence 0.857
190. ; $E ( Z _ { 2 } )$ ; confidence 0.857
191. ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
192. ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
193. ; $a$ ; confidence 0.856
194. ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856
195. ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856
196. ; $F _ { n } ( z )$ ; confidence 0.855
197. ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855
198. ; $b _ { i }$ ; confidence 0.854
199. ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854
200. ; $V < 0$ ; confidence 0.854
201. ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853
202. ; $\hat { \eta } \omega$ ; confidence 0.852
203. ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852
204. ; $\Sigma - 1$ ; confidence 0.852
205. ; $B = I _ { p }$ ; confidence 0.852
206. ; $\beta _ { 0 }$ ; confidence 0.851
207. ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851
208. ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851
209. ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
210. ; $Y _ { j } = i$ ; confidence 0.850
211. ; $S = \frac { K } { 3 }$ ; confidence 0.850
212. ; $N \gg n$ ; confidence 0.849
213. ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849
214. ; $x _ { n } = n$ ; confidence 0.849
215. ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849
216. ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848
217. ; $v = 1.1 m / sec$ ; confidence 0.848
218. ; $\phi _ { x y } a \leq b$ ; confidence 0.847
219. ; $H = C ^ { n }$ ; confidence 0.847
220. ; $K P$ ; confidence 0.846
221. ; $= v : q$ ; confidence 0.846
222. ; $\Gamma _ { q }$ ; confidence 0.846
223. ; $L _ { q } ( X )$ ; confidence 0.846
224. ; $W E = R . F . I$ ; confidence 0.845
225. ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845
226. ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845
227. ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845
228. ; $E$ ; confidence 0.845
229. ; $\pi G ( x ) = b$ ; confidence 0.845
230. ; $| x _ { i } | \leq 1$ ; confidence 0.845
231. ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
232. ; $\operatorname { log } F \leq 100$ ; confidence 0.843
233. ; $q IL$ ; confidence 0.843
234. ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842
235. ; $- \infty < r < \infty$ ; confidence 0.842
236. ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
237. ; $x | < e$ ; confidence 0.841
238. ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841
239. ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840
240. ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
241. ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
242. ; $m \equiv 4$ ; confidence 0.840
243. ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840
244. ; $e \in E$ ; confidence 0.839
245. ; $C$ ; confidence 0.838
246. ; $0 \leq S \leq T$ ; confidence 0.838
247. ; $\Lambda \in N ^ { t }$ ; confidence 0.838
248. ; $u | _ { \Sigma } = 0$ ; confidence 0.837
249. ; $v \in ( 1 - t ) V$ ; confidence 0.837
250. ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837
251. ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837
252. ; $y = y _ { 0 } - a n$ ; confidence 0.836
253. ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
254. ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
255. ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835
256. ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835
257. ; $\Theta$ ; confidence 0.834
258. ; $\forall x _ { k }$ ; confidence 0.834
259. ; $C x ^ { - 1 }$ ; confidence 0.834
260. ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834
261. ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833
262. ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
263. ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833
264. ; $B = 0$ ; confidence 0.833
265. ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
266. ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832
267. ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
268. ; $\partial M$ ; confidence 0.831
269. ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
270. ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831
271. ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830
272. ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830
273. ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
274. ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
275. ; $\rho ^ { ( j ) }$ ; confidence 0.828
276. ; $D _ { n } X _ { 1 }$ ; confidence 0.828
277. ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828
278. ; $CW ( 9.63 )$ ; confidence 0.827
279. ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
280. ; $a \vee b$ ; confidence 0.827
281. ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827
282. ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
283. ; $y = K _ { n } ( x )$ ; confidence 0.826
284. ; $\| x \| = \rho$ ; confidence 0.826
285. ; $x = [ u ]$ ; confidence 0.825
286. ; $z | > 1$ ; confidence 0.823
287. ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823
288. ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823
289. ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
290. ; $n _ { 1 } = 9$ ; confidence 0.822
291. ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822
292. ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822
293. ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
294. ; $f _ { \zeta } ( \lambda )$ ; confidence 0.821
295. ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
296. ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821
297. ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820
298. ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820
299. ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820
300. ; $Z \in X$ ; confidence 0.820
Maximilian Janisch/latexlist/latex/6. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/6&oldid=43856