User:Maximilian Janisch/latexlist/latex/5
List
1. ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961
2. ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961
3. ; $\alpha = \gamma ( 0 )$ ; confidence 0.961
4. ; $\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$ ; confidence 0.960
5. ; $E ( L )$ ; confidence 0.960
6. ; $g _ { i } \in A$ ; confidence 0.960
7. ; $D ( R )$ ; confidence 0.960
8. ; $\mathfrak { h } \subset \mathfrak { g }$ ; confidence 0.959
9. ; $Q ( H ) = B ( H ) / K ( H )$ ; confidence 0.959
10. ; $K \subset H$ ; confidence 0.959
11. ; $- \infty < a < + \infty$ ; confidence 0.959
12. ; $\operatorname { dim } ( S ) = 4 n + 3$ ; confidence 0.958
13. ; $( p \times p _ { 1 } )$ ; confidence 0.958
14. ; $p \in C$ ; confidence 0.958
15. ; $( \frac { u } { v } ) ^ { \prime } = \frac { u ^ { \prime } v - u v ^ { \prime } } { v ^ { 2 } }$ ; confidence 0.958
16. ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.958
17. ; $0 \leq w \leq v$ ; confidence 0.958
18. ; $K _ { \omega }$ ; confidence 0.958
19. ; $q ^ { ( n ) } = d ^ { n } q / d x ^ { n }$ ; confidence 0.958
20. ; $\rho = | y |$ ; confidence 0.958
21. ; $W _ { p } ^ { m } ( I ^ { d } )$ ; confidence 0.958
22. ; $\sigma \in \operatorname { Aut } ( R )$ ; confidence 0.958
23. ; $H$ ; confidence 0.957
24. ; $y _ { n + 1 } = y _ { n } + \frac { h } { 2 } ( f _ { n + 1 } + f _ { n } )$ ; confidence 0.957
25. ; $Z G$ ; confidence 0.957
26. ; $( f _ { 1 } + f _ { 2 } ) ( x ) = f _ { 1 } ( x ) + f _ { 2 } ( x )$ ; confidence 0.957
27. ; $d _ { n } \ll p _ { n } ^ { \theta }$ ; confidence 0.957
28. ; $| z | < r$ ; confidence 0.957
29. ; $\lambda ^ { * } \in R ^ { m }$ ; confidence 0.957
30. ; $\epsilon \ll 1$ ; confidence 0.957
31. ; $L _ { 0 } ^ { * } = L _ { 1 }$ ; confidence 0.957
32. ; $1 _ { n } ( w ) = 0$ ; confidence 0.957
33. ; $f \in B ( m / n )$ ; confidence 0.956
34. ; $d \geq n$ ; confidence 0.956
35. ; $x \neq \pm 1$ ; confidence 0.956
36. ; $| \Phi ( G )$ ; confidence 0.956
37. ; $I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.956
38. ; $U ^ { ( 2 ) }$ ; confidence 0.956
39. ; $x \preceq y$ ; confidence 0.956
40. ; $D _ { n }$ ; confidence 0.956
41. ; $\delta < \alpha$ ; confidence 0.956
42. ; $G = G ^ { \sigma }$ ; confidence 0.956
43. ; $\lambda ^ { m }$ ; confidence 0.955
44. ; $\tau _ { 0 } = 0$ ; confidence 0.955
45. ; $[ \Psi / \Phi ] \Phi$ ; confidence 0.955
46. ; $d g = d h d k$ ; confidence 0.955
47. ; $( \lambda \odot \mu ) \odot v = \lambda \odot ( \mu \odot v )$ ; confidence 0.955
48. ; $H _ { i } \in \mathfrak { g }$ ; confidence 0.955
49. ; $D = d / d t$ ; confidence 0.954
50. ; $\lambda \in \Lambda$ ; confidence 0.954
51. ; $d \omega = d \square ^ { * } \omega = 0$ ; confidence 0.954
52. ; $\nu - 1 / 2 \in Z$ ; confidence 0.954
53. ; $y ( \alpha ) = 0$ ; confidence 0.954
54. ; $\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$ ; confidence 0.954
55. ; $M = M _ { 1 } \# M _ { 2 }$ ; confidence 0.954
56. ; $\{ d f _ { n } / d x \}$ ; confidence 0.954
57. ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953
58. ; $s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$ ; confidence 0.953
59. ; $r > n$ ; confidence 0.953
60. ; $V = V ^ { + } \oplus V ^ { - }$ ; confidence 0.953
61. ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
62. ; $\in \Theta$ ; confidence 0.953
63. ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953
64. ; $g _ { k } = ( 1 + y _ { k } ) / 2$ ; confidence 0.953
65. ; $A$ ; confidence 0.952
66. ; $A _ { i } \in R ^ { n \times n }$ ; confidence 0.952
67. ; $\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$ ; confidence 0.952
68. ; $C$ ; confidence 0.952
69. ; $\Theta$ ; confidence 0.952
70. ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952
71. ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
72. ; $\xi = x _ { m }$ ; confidence 0.952
73. ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951
74. ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951
75. ; $\mu = \delta _ { X }$ ; confidence 0.951
76. ; $( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$ ; confidence 0.951
77. ; $g : Y \rightarrow Z$ ; confidence 0.951
78. ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951
79. ; $F _ { 5 } ^ { \mu } = C _ { 4 } \cap F _ { 8 } ^ { \mu }$ ; confidence 0.951
80. ; $\overline { H }$ ; confidence 0.950
81. ; $q \in Z ^ { N }$ ; confidence 0.950
82. ; $S ^ { 4 k - 1 }$ ; confidence 0.950
83. ; $X ^ { ( r ) } \rightarrow V$ ; confidence 0.950
84. ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950
85. ; $y ^ { * } = \alpha ( g ^ { * } )$ ; confidence 0.950
86. ; $R = \{ \pi ( i ) : \square i \in I \}$ ; confidence 0.950
87. ; $G ^ { k } ( V ) \times V$ ; confidence 0.950
88. ; $M \subset G$ ; confidence 0.949
89. ; $\theta = \theta _ { i }$ ; confidence 0.949
90. ; $X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$ ; confidence 0.949
91. ; $D _ { p }$ ; confidence 0.949
92. ; $\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$ ; confidence 0.949
93. ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949
94. ; $Z = G / U ( 1 ) . K$ ; confidence 0.948
95. ; $s ^ { 3 }$ ; confidence 0.948
96. ; $a ( z )$ ; confidence 0.948
97. ; $x ^ { \sigma } = x$ ; confidence 0.948
98. ; $\omega \in \Omega ^ { d } [ X ]$ ; confidence 0.948
99. ; $D _ { j } ^ { l } f \in L _ { p } ( R ^ { n } )$ ; confidence 0.948
100. ; $k = m / 2$ ; confidence 0.948
101. ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
102. ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
103. ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
104. ; $\alpha \neq 0$ ; confidence 0.947
105. ; $x ( t ) : R \rightarrow R ^ { n }$ ; confidence 0.947
106. ; $x _ { i } / ( e ^ { x _ { i } } - 1 )$ ; confidence 0.947
107. ; $P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$ ; confidence 0.947
108. ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
109. ; $\alpha = - b$ ; confidence 0.947
110. ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
111. ; $\sigma \leq t \leq \theta$ ; confidence 0.947
112. ; $t _ { k } \in R$ ; confidence 0.947
113. ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947
114. ; $C ( S )$ ; confidence 0.946
115. ; $z = \Gamma y$ ; confidence 0.946
116. ; $A _ { i } \Gamma \cap A _ { j } = \emptyset$ ; confidence 0.946
117. ; $A \backslash I$ ; confidence 0.946
118. ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
119. ; $T _ { 23 } n ( \operatorname { cos } \pi \omega )$ ; confidence 0.946
120. ; $( a + b ) + c = a + ( b + c )$ ; confidence 0.946
121. ; $7$ ; confidence 0.945
122. ; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945
123. ; $F _ { m }$ ; confidence 0.945
124. ; $H C ^ { 0 } ( A )$ ; confidence 0.945
125. ; $s = - 2 \nu - \delta$ ; confidence 0.945
126. ; $\operatorname { lm } A ( \tau )$ ; confidence 0.945
127. ; $\phi _ { \alpha } ( f ) = w _ { \alpha }$ ; confidence 0.945
128. ; $R \times D$ ; confidence 0.945
129. ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944
130. ; $A . B$ ; confidence 0.944
131. ; $F _ { j } ( z ) = \sum _ { k = 1 } ^ { N } G _ { j k } ( z )$ ; confidence 0.944
132. ; $- w _ { 0 } ( \chi )$ ; confidence 0.944
133. ; $\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$ ; confidence 0.944
134. ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944
135. ; $y \in G ^ { + }$ ; confidence 0.943
136. ; $\Phi \Psi$ ; confidence 0.943
137. ; $C ^ { b r } ( E ^ { n } )$ ; confidence 0.943
138. ; $f \in W _ { 2 } ^ { 1 }$ ; confidence 0.943
139. ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943
140. ; $s ^ { 2 }$ ; confidence 0.942
141. ; $y ^ { i } C _ { i j k } = 0$ ; confidence 0.942
142. ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942
143. ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
144. ; $R ^ { i } F = H ^ { i } \circ R ^ { * } F$ ; confidence 0.941
145. ; $h : E ^ { m } \rightarrow R$ ; confidence 0.941
146. ; $C = Z ( Q )$ ; confidence 0.941
147. ; $u _ { 0 } = A ^ { - 1 } f$ ; confidence 0.941
148. ; $\phi ( T _ { X } N ) \subset T _ { X } N$ ; confidence 0.941
149. ; $SO ( 3 )$ ; confidence 0.940
150. ; $F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$ ; confidence 0.940
151. ; $V \subset \rho U$ ; confidence 0.940
152. ; $d = ( d _ { n } )$ ; confidence 0.939
153. ; $A = \operatorname { lim } _ { \rightarrow } F ( D )$ ; confidence 0.939
154. ; $\partial _ { s }$ ; confidence 0.939
155. ; $\omega P _ { i } P _ { j }$ ; confidence 0.938
156. ; $L _ { p } ( T )$ ; confidence 0.938
157. ; $x ^ { T } ( t _ { 1 } ) \Phi x ( t _ { 1 } ) + \int _ { t _ { 0 } } ^ { t _ { 1 } } [ x ^ { T } ( t ) M ( t ) x ( t ) + u ^ { T } ( t ) N ( t ) u ( t ) ] d t$ ; confidence 0.938
158. ; $( \Theta , B _ { \Theta } )$ ; confidence 0.937
159. ; $7$ ; confidence 0.937
160. ; $E ^ { n } \times R$ ; confidence 0.937
161. ; $\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$ ; confidence 0.937
162. ; $w ( z ) = \int _ { \gamma } ( t - z ) ^ { \mu + n - 1 } u ( t ) d t$ ; confidence 0.937
163. ; $\square ^ { n - 1 } R _ { n }$ ; confidence 0.937
164. ; $a _ { 0 } ( z ) \neq 0$ ; confidence 0.937
165. ; $y , \beta , e$ ; confidence 0.936
166. ; $K _ { 0 }$ ; confidence 0.936
167. ; $\varphi _ { L } : A \rightarrow P ^ { 4 }$ ; confidence 0.936
168. ; $1 / \mu = d S / d \sigma$ ; confidence 0.936
169. ; $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ ; confidence 0.936
170. ; $f : M \rightarrow R$ ; confidence 0.936
171. ; $F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.936
172. ; $G / G _ { X }$ ; confidence 0.936
173. ; $O _ { S } ^ { * }$ ; confidence 0.936
174. ; $P ^ { 2 r - k }$ ; confidence 0.936
175. ; $C ^ { \infty } ( D ( \Omega ) )$ ; confidence 0.935
176. ; $d S _ { n }$ ; confidence 0.935
177. ; $( i , j )$ ; confidence 0.935
178. ; $X \backslash K _ { X }$ ; confidence 0.934
179. ; $Y ( t ) \in R ^ { m }$ ; confidence 0.934
180. ; $A \rightarrow w$ ; confidence 0.934
181. ; $d ( \Lambda ) = \Delta ( \mathfrak { M } )$ ; confidence 0.934
182. ; $\Psi ( y _ { n } ) \subseteq \Psi ( y _ { 0 } )$ ; confidence 0.934
183. ; $b \in Q$ ; confidence 0.934
184. ; $t _ { n }$ ; confidence 0.933
185. ; $( \nabla _ { X } U ) _ { p }$ ; confidence 0.933
186. ; $\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$ ; confidence 0.933
187. ; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933
188. ; $\alpha = 1 / 2$ ; confidence 0.933
189. ; $x [ M ^ { n } ] = \alpha ( x )$ ; confidence 0.933
190. ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932
191. ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932
192. ; $u ( x _ { 0 } ) = u _ { 0 }$ ; confidence 0.932
193. ; $u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$ ; confidence 0.932
194. ; $P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$ ; confidence 0.932
195. ; $\frac { x ^ { 2 } } { p } - \frac { y ^ { 2 } } { q } = 2 z$ ; confidence 0.932
196. ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932
197. ; $f ( x ) = a x + b$ ; confidence 0.931
198. ; $p _ { i } \in S$ ; confidence 0.931
199. ; $\lambda _ { n } = 1 / ( n + 1 ) ^ { s }$ ; confidence 0.931
200. ; $= C$ ; confidence 0.931
201. ; $d ( m )$ ; confidence 0.930
202. ; $b _ { k } ^ { \prime } = ( - 1 ) ^ { k + 1 } b _ { k }$ ; confidence 0.930
203. ; $\{ d F _ { i } \} _ { 1 } ^ { m }$ ; confidence 0.930
204. ; $0 \rightarrow A ^ { \prime } \rightarrow A \rightarrow A ^ { \prime \prime } \rightarrow 0$ ; confidence 0.930
205. ; $\square _ { q } F _ { p - 1 }$ ; confidence 0.930
206. ; $E S$ ; confidence 0.930
207. ; $u | _ { \Gamma } = \psi$ ; confidence 0.930
208. ; $\sum ( k _ { i } - 1 )$ ; confidence 0.930
209. ; $\forall y ( \neg y \in x )$ ; confidence 0.930
210. ; $| x | | \leq 1$ ; confidence 0.929
211. ; $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$ ; confidence 0.929
212. ; $V _ { \lambda } ^ { 0 } \subset V _ { \lambda }$ ; confidence 0.929
213. ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929
214. ; $P _ { 1 }$ ; confidence 0.928
215. ; $\{ r _ { n } + r _ { n } ^ { \prime } \}$ ; confidence 0.928
216. ; $X \rightarrow P L / O$ ; confidence 0.928
217. ; $\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$ ; confidence 0.927
218. ; $\frac { 1 } { 2 \pi } \{ \text { hyperbolic area of } \Omega \backslash \Gamma \} \leq 2 ( N - 1 )$ ; confidence 0.926
219. ; $m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } ( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } ) d \rho _ { 0 } ( t )$ ; confidence 0.926
220. ; $\sum _ { k = 1 } ^ { \infty } \| u _ { k } \| = \sum _ { k = 1 } ^ { \infty } 1 / k$ ; confidence 0.925
221. ; $f ( \xi _ { T } ( t ) )$ ; confidence 0.925
222. ; $K _ { 0 } ( \varphi )$ ; confidence 0.924
223. ; $a ( r )$ ; confidence 0.924
224. ; $H _ { i } ( x ^ { \prime } ) > H _ { i } ( x ^ { \prime \prime } )$ ; confidence 0.924
225. ; $K _ { y } ^ { \alpha }$ ; confidence 0.924
226. ; $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$ ; confidence 0.923
227. ; $M _ { 2 } \times S ^ { N }$ ; confidence 0.923
228. ; $\nu = 0$ ; confidence 0.923
229. ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
230. ; $I$ ; confidence 0.923
231. ; $| \sigma ^ { n } |$ ; confidence 0.923
232. ; $E$ ; confidence 0.923
233. ; $A \wedge B$ ; confidence 0.923
234. ; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922
235. ; $\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$ ; confidence 0.922
236. ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.922
237. ; $Z = \int _ { A } D A \sqrt { \operatorname { det } ( / \partial _ { A } ^ { * } / \partial _ { A } ) } \operatorname { exp } [ - \| F \| ^ { 2 } ]$ ; confidence 0.921
238. ; $S _ { g } ( w _ { 0 } )$ ; confidence 0.921
239. ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921
240. ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
241. ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920
242. ; $\Gamma \subset M _ { A }$ ; confidence 0.920
243. ; $f : W \rightarrow R$ ; confidence 0.920
244. ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920
245. ; $\Omega _ { X / Y } ^ { 1 }$ ; confidence 0.919
246. ; $A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$ ; confidence 0.919
247. ; $3 N + k + m$ ; confidence 0.919
248. ; $P _ { n } ( f )$ ; confidence 0.919
249. ; $N \geq Z$ ; confidence 0.919
250. ; $\| T _ { M } \|$ ; confidence 0.918
251. ; $f \in C ^ { k }$ ; confidence 0.918
252. ; $\alpha _ { i } : A _ { i } \rightarrow X$ ; confidence 0.918
253. ; $= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$ ; confidence 0.918
254. ; $K _ { X } ^ { - 1 }$ ; confidence 0.918
255. ; $P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$ ; confidence 0.918
256. ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917
257. ; $Z _ { 12 }$ ; confidence 0.917
258. ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
259. ; $t _ { f } ( n )$ ; confidence 0.917
260. ; $X _ { 1 } \cup X _ { 2 } = X$ ; confidence 0.917
261. ; $m > 3$ ; confidence 0.916
262. ; $S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$ ; confidence 0.916
263. ; $| \alpha ( z ) |$ ; confidence 0.916
264. ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916
265. ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915
266. ; $\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$ ; confidence 0.915
267. ; $\{ x : | x - y | < r \}$ ; confidence 0.915
268. ; $31$ ; confidence 0.915
269. ; $X = 1 ^ { p }$ ; confidence 0.914
270. ; $H : X _ { 3 } B X _ { 4 } = 0$ ; confidence 0.914
271. ; $h \in \Omega$ ; confidence 0.914
272. ; $\Pi ^ { \prime \prime }$ ; confidence 0.914
273. ; $T$ ; confidence 0.914
274. ; $P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$ ; confidence 0.914
275. ; $\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$ ; confidence 0.914
276. ; $d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$ ; confidence 0.914
277. ; $\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$ ; confidence 0.913
278. ; $0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$ ; confidence 0.913
279. ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912
280. ; $A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$ ; confidence 0.911
281. ; $s ^ { \prime } ( \Omega ^ { r } ( X ) )$ ; confidence 0.911
282. ; $\lambda = \lambda _ { j }$ ; confidence 0.911
283. ; $\gamma : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.911
284. ; $\beta$ ; confidence 0.911
285. ; $SL _ { 2 } ( C )$ ; confidence 0.910
286. ; $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ ; confidence 0.910
287. ; $P \rightarrow e$ ; confidence 0.910
288. ; $\omega ^ { - 1 }$ ; confidence 0.909
289. ; $F ( \phi ) \in A ( \hat { G } )$ ; confidence 0.909
290. ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909
291. ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909
292. ; $x \in J$ ; confidence 0.908
293. ; $\operatorname { lm } z ( x ) = 1$ ; confidence 0.908
294. ; $S = o ( \# A )$ ; confidence 0.908
295. ; $6$ ; confidence 0.907
296. ; $K ( L )$ ; confidence 0.907
297. ; $\beta ^ { s - k } z ^ { \prime }$ ; confidence 0.907
298. ; $E = E$ ; confidence 0.907
299. ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907
300. ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906
Maximilian Janisch/latexlist/latex/5. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/5&oldid=43855