User:Maximilian Janisch/latexlist/latex/11
List
1. ; $\sqrt { 2 }$ ; confidence 0.155
2. ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152
3. ; $N _ { 0 }$ ; confidence 0.151
4. ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
5. ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147
6. ; $\{ \tau _ { j } ^ { e } \} \in G _ { I }$ ; confidence 0.146
7. ; $\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$ ; confidence 0.144
8. ; $F = p t$ ; confidence 0.143
9. ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143
10. ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
11. ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
12. ; $R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$ ; confidence 0.142
13. ; $5 + 7 n$ ; confidence 0.141
14. ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
15. ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139
16. ; $\sigma _ { d x } ( A )$ ; confidence 0.138
17. ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
18. ; $Q _ { A }$ ; confidence 0.136
19. ; $3 + 5$ ; confidence 0.136
20. ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
21. ; $T _ { W \alpha } = T$ ; confidence 0.134
22. ; $O \subset A _ { R }$ ; confidence 0.132
23. ; $p i n$ ; confidence 0.132
24. ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131
25. ; $L \cup O$ ; confidence 0.130
26. ; $\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$ ; confidence 0.130
27. ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
28. ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128
29. ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
30. ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
31. ; $\mathfrak { A } _ { E }$ ; confidence 0.121
32. ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
33. ; $q _ { A }$ ; confidence 0.118
34. ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117
35. ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117
36. ; $Z [ X _ { é } : e \in E$ ; confidence 0.114
37. ; $2$ ; confidence 0.110
38. ; $| x _ { \mathfrak { j } } | \leq M$ ; confidence 0.106
39. ; $A < \operatorname { ln } d X$ ; confidence 0.106
40. ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104
41. ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104
42. ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103
43. ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
44. ; $Q$ ; confidence 0.095
45. ; $\operatorname { Ccm } ( G )$ ; confidence 0.094
46. ; $\operatorname { sin } 0$ ; confidence 0.092
47. ; $\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$ ; confidence 0.090
48. ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
49. ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
50. ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
51. ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$ ; confidence 0.087
52. ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085
53. ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
54. ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082
55. ; $V _ { V }$ ; confidence 0.082
56. ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081
57. ; $E _ { e } ^ { t X } 1$ ; confidence 0.078
58. ; $W _ { N } \rightarrow W _ { n }$ ; confidence 0.076
59. ; $\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.076
60. ; $\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$ ; confidence 0.076
61. ; $M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$ ; confidence 0.076
62. ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075
63. ; $C _ { \omega }$ ; confidence 0.073
64. ; $\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$ ; confidence 0.072
65. ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
66. ; $f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$ ; confidence 0.071
67. ; $\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$ ; confidence 0.071
68. ; $\{ f \rangle _ { P } \sim | V |$ ; confidence 0.071
69. ; $\operatorname { Re } _ { c _ { N } } = n$ ; confidence 0.069
70. ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
71. ; $c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$ ; confidence 0.068
72. ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066
73. ; $\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$ ; confidence 0.066
74. ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061
75. ; $R _ { y } ^ { t }$ ; confidence 0.060
76. ; $Q _ { 1 }$ ; confidence 0.060
77. ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058
78. ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.057
79. ; $x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$ ; confidence 0.056
80. ; $= \operatorname { sin } \gamma q$ ; confidence 0.055
81. ; $A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$ ; confidence 0.055
82. ; $( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$ ; confidence 0.053
83. ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051
Maximilian Janisch/latexlist/latex/11. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/11&oldid=43841