User:Maximilian Janisch/latexlist/latex/10
List
1. ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405
2. ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
3. ; $P$ ; confidence 0.403
4. ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403
5. ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
6. ; $Z \in G$ ; confidence 0.401
7. ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
8. ; $\epsilon _ { i j } ^ { k }$ ; confidence 0.400
9. ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399
10. ; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397
11. ; $5$ ; confidence 0.396
12. ; $25$ ; confidence 0.396
13. ; $M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$ ; confidence 0.396
14. ; $R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$ ; confidence 0.396
15. ; $H ( K )$ ; confidence 0.395
16. ; $\operatorname { gr } D _ { X }$ ; confidence 0.395
17. ; $P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$ ; confidence 0.394
18. ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391
19. ; $1 B S G$ ; confidence 0.389
20. ; $E ( Z _ { 13 } ) = 0$ ; confidence 0.388
21. ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388
22. ; $( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$ ; confidence 0.385
23. ; $P _ { \alpha }$ ; confidence 0.384
24. ; $v _ { 0 } ^ { k }$ ; confidence 0.384
25. ; $X *$ ; confidence 0.383
26. ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382
27. ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382
28. ; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382
29. ; $631$ ; confidence 0.381
30. ; $Q$ ; confidence 0.380
31. ; $w ^ { \prime }$ ; confidence 0.380
32. ; $\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$ ; confidence 0.378
33. ; $Sp ( 0 )$ ; confidence 0.378
34. ; $n - r$ ; confidence 0.377
35. ; $( g )$ ; confidence 0.376
36. ; $4 x$ ; confidence 0.375
37. ; $H ( z ) = \sum _ { i = 1 } ^ { n } \sum _ { j = 1 } ^ { n } a _ { i j } z _ { i } z _ { j }$ ; confidence 0.374
38. ; $D _ { \alpha }$ ; confidence 0.374
39. ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374
40. ; $\mathfrak { M } _ { n }$ ; confidence 0.373
41. ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
42. ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371
43. ; $f _ { h } \in U _ { k }$ ; confidence 0.371
44. ; $d _ { C } ^ { - 1 } = \operatorname { det } \left\| \begin{array} { c c } { \phi _ { \theta } \theta } & { \phi _ { \theta x } } \\ { \phi _ { y } \theta } & { \phi _ { y x } } \end{array} \right\|$ ; confidence 0.370
45. ; $z \in C$ ; confidence 0.369
46. ; $M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$ ; confidence 0.369
47. ; $K _ { X } ^ { v } \otimes L ^ { i }$ ; confidence 0.368
48. ; $n \| < C$ ; confidence 0.368
49. ; $\partial _ { x } = \partial / \partial x$ ; confidence 0.368
50. ; $E _ { i j }$ ; confidence 0.366
51. ; $b _ { 0 }$ ; confidence 0.363
52. ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
53. ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362
54. ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362
55. ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361
56. ; $u _ { m } = u ( M _ { m } )$ ; confidence 0.360
57. ; $\hat { V }$ ; confidence 0.359
58. ; $L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$ ; confidence 0.358
59. ; $v _ { n } \in G$ ; confidence 0.357
60. ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$ ; confidence 0.357
61. ; $\mathfrak { p } \supset b$ ; confidence 0.356
62. ; $0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$ ; confidence 0.355
63. ; $0$ ; confidence 0.355
64. ; $t$ ; confidence 0.354
65. ; $\rho _ { 0 n + } = \operatorname { sin } A$ ; confidence 0.354
66. ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354
67. ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352
68. ; $m _ { k } = \dot { k }$ ; confidence 0.352
69. ; $( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$ ; confidence 0.351
70. ; $l _ { k } ( A )$ ; confidence 0.348
71. ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345
72. ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345
73. ; $y _ { 0 } = A _ { x }$ ; confidence 0.344
74. ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
75. ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342
76. ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338
77. ; $\phi _ { i } / \partial x _ { Y }$ ; confidence 0.338
78. ; $T _ { i j }$ ; confidence 0.337
79. ; $T _ { \nu }$ ; confidence 0.336
80. ; $\| f \| _ { \Lambda _ { p } ^ { r } ( R ^ { n } ) } \leq K$ ; confidence 0.335
81. ; $c \rightarrow N$ ; confidence 0.335
82. ; $\mu$ ; confidence 0.335
83. ; $\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$ ; confidence 0.333
84. ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332
85. ; $F T op$ ; confidence 0.332
86. ; $\| u - P _ { n } u \| _ { A } \rightarrow 0$ ; confidence 0.332
87. ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
88. ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
89. ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
90. ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
91. ; $o = e K$ ; confidence 0.327
92. ; $_ { \nabla } ( G / K )$ ; confidence 0.326
93. ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
94. ; $c$ ; confidence 0.324
95. ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
96. ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322
97. ; $n ( O _ { x } ) = 0$ ; confidence 0.322
98. ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
99. ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
100. ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
101. ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
102. ; $F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.316
103. ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316
104. ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
105. ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315
106. ; $\partial _ { r }$ ; confidence 0.315
107. ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315
108. ; $e$ ; confidence 0.314
109. ; $\therefore M \rightarrow F$ ; confidence 0.313
110. ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
111. ; $M ^ { 0 }$ ; confidence 0.312
112. ; $0$ ; confidence 0.311
113. ; $\Gamma 20$ ; confidence 0.310
114. ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
115. ; $\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$ ; confidence 0.308
116. ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308
117. ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
118. ; $f \in S _ { y } ^ { \prime }$ ; confidence 0.307
119. ; $h$ ; confidence 0.307
120. ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304
121. ; $\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$ ; confidence 0.304
122. ; $P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$ ; confidence 0.303
123. ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301
124. ; $- \infty \leq w \leq + \infty$ ; confidence 0.301
125. ; $x \in \operatorname { Dom } A$ ; confidence 0.300
126. ; $e \omega ^ { r } f$ ; confidence 0.300
127. ; $\Pi I _ { \lambda }$ ; confidence 0.300
128. ; $\overline { U }$ ; confidence 0.299
129. ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
130. ; $\{ \partial f \rangle$ ; confidence 0.295
131. ; $\{ A \rangle$ ; confidence 0.294
132. ; $\phi _ { im }$ ; confidence 0.294
133. ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291
134. ; $\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$ ; confidence 0.291
135. ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
136. ; $t \circ \in E$ ; confidence 0.290
137. ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
138. ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
139. ; $x _ { y } + 1 = t$ ; confidence 0.287
140. ; $A \in \mathfrak { S }$ ; confidence 0.285
141. ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
142. ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
143. ; $\sqrt { 3 }$ ; confidence 0.281
144. ; $X \in X$ ; confidence 0.278
145. ; $f ^ { \mu } | _ { K }$ ; confidence 0.278
146. ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
147. ; $a ^ { \prime } \Theta$ ; confidence 0.275
148. ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
149. ; $G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$ ; confidence 0.272
150. ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
151. ; $99$ ; confidence 0.271
152. ; $| e | | < 1$ ; confidence 0.271
153. ; $Z y \rightarrow \infty$ ; confidence 0.270
154. ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269
155. ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
156. ; $\chi \pi _ { \alpha }$ ; confidence 0.268
157. ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
158. ; $h ( [ a ] )$ ; confidence 0.265
159. ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264
160. ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
161. ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262
162. ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
163. ; $\beta X = S \square x = \omega _ { \kappa } X$ ; confidence 0.261
164. ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
165. ; $r _ { ess } ( T )$ ; confidence 0.259
166. ; $m$ ; confidence 0.259
167. ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259
168. ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
169. ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258
170. ; $L ^ { \prime }$ ; confidence 0.256
171. ; $x _ { C }$ ; confidence 0.256
172. ; $[ f _ { G } ]$ ; confidence 0.256
173. ; $D \Re \subset M$ ; confidence 0.255
174. ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254
175. ; $7$ ; confidence 0.254
176. ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
177. ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
178. ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
179. ; $X \in Ob \odot$ ; confidence 0.251
180. ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
181. ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
182. ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
183. ; $E \subset X = R ^ { \prime }$ ; confidence 0.250
184. ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250
185. ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
186. ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
187. ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248
188. ; $s l _ { 2 }$ ; confidence 0.247
189. ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
190. ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245
191. ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
192. ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
193. ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
194. ; $q R$ ; confidence 0.245
195. ; $V _ { Q }$ ; confidence 0.244
196. ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
197. ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
198. ; $( n$ ; confidence 0.239
199. ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
200. ; $0.00$ ; confidence 0.237
201. ; $X _ { 1 }$ ; confidence 0.237
202. ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
203. ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235
204. ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
205. ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234
206. ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
207. ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233
208. ; $C A$ ; confidence 0.232
209. ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
210. ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
211. ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
212. ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
213. ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
214. ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229
215. ; $n + = n - = n$ ; confidence 0.228
216. ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
217. ; $C X Y$ ; confidence 0.226
218. ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
219. ; $20$ ; confidence 0.225
220. ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
221. ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
222. ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
223. ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
224. ; $X \equiv 0$ ; confidence 0.220
225. ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220
226. ; $H ^ { \prime }$ ; confidence 0.219
227. ; $P ( s S ) = P ( S )$ ; confidence 0.219
228. ; $Z _ { h }$ ; confidence 0.217
229. ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
230. ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
231. ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
232. ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212
233. ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
234. ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
235. ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
236. ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
237. ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
238. ; $k$ ; confidence 0.208
239. ; $| x$ ; confidence 0.207
240. ; $\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$ ; confidence 0.207
241. ; $H _ { \hat { j } }$ ; confidence 0.205
242. ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
243. ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204
244. ; $\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$ ; confidence 0.204
245. ; $\alpha \rightarrow \dot { b }$ ; confidence 0.200
246. ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200
247. ; $\hat { W } \square _ { \infty } ^ { \gamma }$ ; confidence 0.199
248. ; $\sigma _ { k }$ ; confidence 0.198
249. ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197
250. ; $l _ { x }$ ; confidence 0.196
251. ; $f : S ^ { m } \rightarrow S ^ { n }$ ; confidence 0.195
252. ; $\dot { u } = A _ { n } u$ ; confidence 0.195
253. ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
254. ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
255. ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
256. ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192
257. ; $\sqrt { 2 }$ ; confidence 0.191
258. ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
259. ; $\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$ ; confidence 0.191
260. ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
261. ; $\dot { i } \leq n$ ; confidence 0.190
262. ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189
263. ; $v _ { ( E ) } = v$ ; confidence 0.188
264. ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
265. ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
266. ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187
267. ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
268. ; $\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$ ; confidence 0.185
269. ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
270. ; $\Pi ^ { N } \tau$ ; confidence 0.183
271. ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
272. ; $N$ ; confidence 0.183
273. ; $e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$ ; confidence 0.182
274. ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182
275. ; $\hat { K } _ { i }$ ; confidence 0.180
276. ; $\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$ ; confidence 0.180
277. ; $U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$ ; confidence 0.179
278. ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179
279. ; $A _ { i \psi }$ ; confidence 0.179
280. ; $_ { k }$ ; confidence 0.179
281. ; $\alpha \in C \cup \{ \infty \}$ ; confidence 0.176
282. ; $C$ ; confidence 0.175
283. ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
284. ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
285. ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
286. ; $n _ { s } + n _ { u } = n$ ; confidence 0.172
287. ; $x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$ ; confidence 0.172
288. ; $\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$ ; confidence 0.172
289. ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170
290. ; $L f \theta$ ; confidence 0.169
291. ; $e _ { j k }$ ; confidence 0.169
292. ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
293. ; $RP ^ { \infty }$ ; confidence 0.165
294. ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
295. ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
296. ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
297. ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160
298. ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
299. ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
300. ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156
Maximilian Janisch/latexlist/latex/10. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/10&oldid=43840