Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/11

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 11:41, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 11 out of 11 with 83 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. w09703029.png ; $U = \cup _ { i } \operatorname { Im } f$ ; confidence 0.671

2. w0970409.png ; $\int _ { 0 } ^ { \pi / 2 } \operatorname { sin } ^ { 2 m + 1 } x d x$ ; confidence 0.964

3. w09706017.png ; $2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$ ; confidence 0.976

4. w0970903.png ; $F ( x )$ ; confidence 1.000

5. w0971508.png ; $\lambda = 2 \pi / | k |$ ; confidence 0.980

6. w09729017.png ; $A _ { n } ( x _ { 0 } )$ ; confidence 0.499

7. w09731010.png ; $\partial ^ { 2 } u / \partial x ^ { 2 } + \partial ^ { 2 } u / \partial y ^ { 2 } + k ^ { 2 } u = 0$ ; confidence 0.997

8. w0973508.png ; $A = N \oplus s$ ; confidence 0.521

9. w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438

10. w09745039.png ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.799

11. w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426

12. w09747012.png ; $x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$ ; confidence 0.980

13. w13004043.png ; $K = - ( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \} ^ { 2 }$ ; confidence 0.571

14. w09751010.png ; $m _ { k } = \dot { k }$ ; confidence 0.352

15. w097510202.png ; $q \in T _ { n } ( k )$ ; confidence 0.977

16. w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413

17. w12005029.png ; $D = R [ x ] / D$ ; confidence 0.968

18. w09760044.png ; $H ^ { i } ( X )$ ; confidence 0.995

19. w0976009.png ; $H ^ { 2 n } ( X )$ ; confidence 0.999

20. w13007023.png ; $\beta$ ; confidence 0.911

21. w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315

22. w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860

23. w097670151.png ; $A _ { k + 1 } ( C )$ ; confidence 0.634

24. w097670153.png ; $\oplus V _ { k } ( M ) / V _ { k - 1 } ( M )$ ; confidence 0.970

25. w12007015.png ; $q$ ; confidence 0.899

26. w120070106.png ; $C ^ { \prime } = 1$ ; confidence 0.999

27. w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906

28. w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463

29. w09771067.png ; $N _ { G } ( T ) / Z _ { G } ( T )$ ; confidence 0.990

30. w0977109.png ; $N _ { G } ( T )$ ; confidence 0.970

31. w0977202.png ; $f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$ ; confidence 0.966

32. w120090131.png ; $\Delta ( \lambda ) ^ { \mu }$ ; confidence 1.000

33. w120090399.png ; $L ( \mu )$ ; confidence 0.993

34. w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487

35. w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944

36. w12011024.png ; $\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$ ; confidence 0.058

37. w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712

38. w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887

39. w120110210.png ; $G = G ^ { \sigma }$ ; confidence 0.956

40. w120110192.png ; $X \in \Phi$ ; confidence 0.895

41. w120110269.png ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$ ; confidence 0.357

42. w09779041.png ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354

43. w12014036.png ; $S \square T$ ; confidence 0.898

44. w130080142.png ; $T _ { n }$ ; confidence 0.602

45. w13008076.png ; $N = 2$ ; confidence 0.996

46. w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942

47. w130080124.png ; $T _ { 1 } \sim \Lambda$ ; confidence 0.998

48. w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238

49. w12017064.png ; $l \equiv 2 ( \operatorname { mod } 3 )$ ; confidence 0.997

50. w0979106.png ; $B ( \lambda )$ ; confidence 1.000

51. w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885

52. w13009059.png ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$ ; confidence 0.591

53. w13009053.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$ ; confidence 0.909

54. w13009083.png ; $( g ) = g ^ { \prime }$ ; confidence 1.000

55. w12018046.png ; $t _ { 1 } \in D ^ { - }$ ; confidence 0.997

56. w11007022.png ; $\| x \| _ { 1 }$ ; confidence 0.650

57. w12019047.png ; $P = - i \hbar \nabla _ { x }$ ; confidence 0.929

58. w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134

59. w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515

60. w12021059.png ; $B _ { m } = R$ ; confidence 0.993

61. w09804013.png ; $p ( n + 1 ) / 2$ ; confidence 0.997

62. w11012047.png ; $( D ) \leq c \text { length } ( C )$ ; confidence 0.985

63. w09816057.png ; $Y \times X$ ; confidence 0.869

64. x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228

65. x12001022.png ; $\sigma \in \operatorname { Aut } ( R )$ ; confidence 0.958

66. x12002033.png ; $D ( R )$ ; confidence 0.960

67. y11001021.png ; $J ( \phi )$ ; confidence 0.976

68. y11001038.png ; $\| \phi _ { q } \| _ { q } = 1$ ; confidence 0.797

69. y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459

70. y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828

71. y12001017.png ; $R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$ ; confidence 0.996

72. y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794

73. y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786

74. y09903095.png ; $\sigma ( M ^ { 4 } )$ ; confidence 1.000

75. y099030101.png ; $\pi _ { 1 } : P _ { 1 } \rightarrow S ^ { 4 }$ ; confidence 0.998

76. y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881

77. z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569

78. z13010033.png ; $\forall y ( \neg y \in x )$ ; confidence 0.930

79. z13005046.png ; $I = ( f )$ ; confidence 0.997

80. z11001018.png ; $( f g f h )$ ; confidence 0.723

81. z12002043.png ; $1.609$ ; confidence 0.997

82. z09925023.png ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156

83. z1301303.png ; $x _ { 2 } = r \operatorname { sin } \theta$ ; confidence 0.977

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/11. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/11&oldid=43829