Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/10

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 11:41, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 10 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837

2. s13036039.png ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.676

3. s120150139.png ; $\varphi H G$ ; confidence 0.652

4. s08579085.png ; $\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$ ; confidence 0.755

5. s0858103.png ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895

6. s085820238.png ; $b ( x ) < 0$ ; confidence 1.000

7. s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874

8. s08602026.png ; $\overline { D ^ { + } } = D ^ { + } \cup \Gamma$ ; confidence 0.709

9. s12018056.png ; $M = M ^ { \perp \perp }$ ; confidence 0.970

10. s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892

11. s086190182.png ; $s \in E ^ { n }$ ; confidence 0.570

12. s086330106.png ; $\| x \| ^ { 2 } = \int _ { \sigma ( A ) } | f _ { \lambda } ( x ) | ^ { 2 } d \rho ( \lambda )$ ; confidence 0.635

13. s08633021.png ; $\sigma _ { d x } ( A )$ ; confidence 0.138

14. s08633098.png ; $A \Phi \subset \Phi$ ; confidence 0.973

15. s086360102.png ; $B ( r ) = \int _ { 0 } ^ { \infty } J _ { 0 } ( \lambda r ) d F ( \lambda )$ ; confidence 0.998

16. s0863808.png ; $s _ { 1 } - t _ { 1 } = s _ { 2 } - t _ { 2 }$ ; confidence 0.998

17. s08645013.png ; $A _ { \delta }$ ; confidence 0.997

18. s0864803.png ; $E | X ( t ) | ^ { n } \leq C < \infty$ ; confidence 0.578

19. s086490118.png ; $d ^ { \prime }$ ; confidence 0.445

20. s08652091.png ; $| T | _ { p }$ ; confidence 0.714

21. s086520138.png ; $\theta _ { T } = \theta$ ; confidence 0.989

22. s0865507.png ; $B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$ ; confidence 0.980

23. s08659060.png ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.075

24. s08662027.png ; $\Sigma ( \Sigma ^ { n } X ) \rightarrow \Sigma ^ { n + 1 } X$ ; confidence 0.992

25. s08662031.png ; $( \pi )$ ; confidence 1.000

26. s086650167.png ; $Z _ { 24 }$ ; confidence 0.663

27. s08665020.png ; $i > 2 n - 1$ ; confidence 0.989

28. s08670044.png ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.763

29. s086720108.png ; $V ^ { 3 } = E ^ { 3 }$ ; confidence 0.992

30. s086720109.png ; $K ( d s ) = K$ ; confidence 0.996

31. s08672038.png ; $\pi = n \sqrt { 1 + \sum p ^ { 2 } }$ ; confidence 0.678

32. s1202309.png ; $O ( r )$ ; confidence 0.866

33. s11024022.png ; $\lambda _ { m } ( t )$ ; confidence 0.691

34. s08677096.png ; $5 + 7 n$ ; confidence 0.141

35. s086810102.png ; $f \in W _ { 2 } ^ { 3 } ( \Omega )$ ; confidence 0.999

36. s08681080.png ; $( 2 m - 2 )$ ; confidence 1.000

37. s086810108.png ; $W _ { p } ^ { m } ( I ^ { d } )$ ; confidence 0.958

38. s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864

39. s13051063.png ; $\Gamma = \Gamma _ { 1 } + \ldots + \Gamma _ { m }$ ; confidence 0.966

40. s130510126.png ; $\gamma ( u ) < \infty$ ; confidence 0.997

41. s086940114.png ; $\operatorname { det } S \neq 0$ ; confidence 0.896

42. s086940100.png ; $- \infty \leq w \leq + \infty$ ; confidence 0.301

43. s086940134.png ; $0 \leq \omega \leq \infty$ ; confidence 0.754

44. s08694070.png ; $\| \eta ( \cdot ) \| ^ { 2 } = \int _ { 0 } ^ { \infty } | \eta ( t ) | ^ { 2 } d t$ ; confidence 0.669

45. s08696030.png ; $\| x _ { 0 } \| \leq \delta$ ; confidence 0.966

46. s08696076.png ; $V < 0$ ; confidence 0.854

47. s08696095.png ; $k \leq p \leq n$ ; confidence 0.985

48. s0870309.png ; $f _ { h } \in U _ { k }$ ; confidence 0.371

49. s08703096.png ; $\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$ ; confidence 0.172

50. s08711028.png ; $\delta < \alpha$ ; confidence 0.956

51. s08713053.png ; $m < \infty$ ; confidence 0.973

52. s08726044.png ; $\eta _ { 0 } ( i )$ ; confidence 0.979

53. s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167

54. s087280193.png ; $m = E X ( s )$ ; confidence 0.808

55. s08730040.png ; $Q _ { 1 }$ ; confidence 0.060

56. s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864

57. s08732041.png ; $\mathfrak { R } _ { \mu } ( \Pi _ { 0 } ) = \operatorname { inf } _ { \Pi } \Re _ { \mu } ( \Pi )$ ; confidence 0.658

58. s08733032.png ; $H _ { i } ( \omega )$ ; confidence 0.983

59. s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870

60. s087360228.png ; $P \{ s ^ { 2 } < \frac { \sigma ^ { 2 } x } { n - 1 } \} = G _ { n - 1 } ( x ) = D _ { n - 1 } \int _ { 0 } ^ { x } v ^ { ( n - 3 ) } / 2 e ^ { - v / 2 } d v$ ; confidence 0.622

61. s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827

62. s087400105.png ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.815

63. s11026022.png ; $\eta \in R ^ { k }$ ; confidence 0.999

64. s08742011.png ; $H = H _ { V } ( \omega )$ ; confidence 0.988

65. s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216

66. s08742067.png ; $\{ f \rangle _ { P } \sim | V |$ ; confidence 0.071

67. s087450224.png ; $\frac { 1 } { 2 \pi } \sum _ { t = - T + 1 } ^ { T - 1 } e ^ { - i t \lambda } r ^ { * } ( t ) c T ( t )$ ; confidence 0.607

68. s087450112.png ; $\xi = \sum b _ { j } x ( t _ { j } )$ ; confidence 0.942

69. s087450113.png ; $\sum b _ { j } \phi _ { l } ( t _ { j } ) = 0$ ; confidence 0.990

70. s087450208.png ; $I _ { T } ( \lambda ) = \frac { 1 } { 2 \pi T } | \int _ { 0 } ^ { T } e ^ { - i t \lambda } x ( t ) d t |$ ; confidence 0.646

71. s087450221.png ; $a T \rightarrow \infty$ ; confidence 0.506

72. s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481

73. s08746026.png ; $\{ \epsilon _ { t } \}$ ; confidence 0.993

74. s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489

75. s08755019.png ; $\alpha < p b$ ; confidence 0.578

76. s08755022.png ; $\alpha \leq p b$ ; confidence 0.784

77. s08764034.png ; $g \neq 0$ ; confidence 1.000

78. s08764060.png ; $I = \{ f \in O ( X ) : f ( x ) = 0 \}$ ; confidence 0.993

79. s08764057.png ; $I \subset O ( X )$ ; confidence 0.970

80. s08764086.png ; $n ( O _ { x } ) = 0$ ; confidence 0.322

81. s0876903.png ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345

82. s08771037.png ; $\omega ( R )$ ; confidence 0.999

83. s11028060.png ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.947

84. s08779013.png ; $RP ^ { \infty }$ ; confidence 0.165

85. s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259

86. s08778069.png ; $x [ M ^ { n } ] = \alpha ( x )$ ; confidence 0.933

87. s08778021.png ; $w ^ { \prime }$ ; confidence 0.380

88. s08780026.png ; $x + C$ ; confidence 0.988

89. s08780044.png ; $| u ( x _ { 1 } ) - u ( x _ { 2 } ) | \leq C | x _ { 1 } - x _ { 2 }$ ; confidence 0.995

90. s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183

91. s08782077.png ; $| \frac { 1 } { 1 - H \lambda _ { i } } | < 1$ ; confidence 0.997

92. s087820210.png ; $y _ { n + 1 } = y _ { n } + \int _ { 0 } ^ { H / 2 } e ^ { A \tau } d \tau \times$ ; confidence 0.976

93. s08782061.png ; $\alpha _ { 1 } = - 3$ ; confidence 0.753

94. s087820182.png ; $\| y \| = \operatorname { max } _ { i } | y _ { i } |$ ; confidence 0.800

95. s09013024.png ; $H \mapsto \alpha ( H )$ ; confidence 0.996

96. s09013055.png ; $K . ( H X ) = ( K H ) X$ ; confidence 0.766

97. s12026061.png ; $\partial _ { s }$ ; confidence 0.939

98. s11029032.png ; $t / \lambda ^ { 2 } \rightarrow + \infty$ ; confidence 0.986

99. s09017045.png ; $E$ ; confidence 0.923

100. s09017090.png ; $B \in \mathfrak { B } _ { 0 }$ ; confidence 0.992

101. s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500

102. s0901802.png ; $\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$ ; confidence 0.740

103. s090190160.png ; $X ( t _ { 1 } ) = x$ ; confidence 0.980

104. s09019043.png ; $t = Z$ ; confidence 0.971

105. s09022010.png ; $x ( \phi )$ ; confidence 0.999

106. s09023035.png ; $\overline { w }$ ; confidence 0.553

107. s09026037.png ; $d x = A ( t ) x d t + B ( t ) d w ( t )$ ; confidence 0.986

108. s09026014.png ; $d X ( t ) = a ( t ) Z ( t ) d t + d Y ( t )$ ; confidence 0.505

109. s0902702.png ; $\alpha < t < b$ ; confidence 0.786

110. s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837

111. s09045037.png ; $W ^ { ( n ) } ( s )$ ; confidence 0.986

112. s0905905.png ; $J ( y ) \leq J ( y )$ ; confidence 0.683

113. s1202804.png ; $\overline { f } : X \rightarrow Y$ ; confidence 0.998

114. s12028015.png ; $\overline { E } * ( X )$ ; confidence 0.554

115. s09067035.png ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362

116. s09071014.png ; $f = 1$ ; confidence 1.000

117. s09072010.png ; $a \neq a _ { 0 }$ ; confidence 0.773

118. s09076059.png ; $p ( \alpha )$ ; confidence 0.904

119. s09076071.png ; $l [ f ] = 0$ ; confidence 0.979

120. s09076026.png ; $L _ { 0 } ^ { * } = L _ { 1 }$ ; confidence 0.957

121. s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830

122. s09078074.png ; $\Phi ^ { \prime \prime } ( + 0 ) = - h$ ; confidence 0.997

123. s13062062.png ; $m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } ( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } ) d \rho _ { 0 } ( t )$ ; confidence 0.926

124. s0908209.png ; $X ^ { * }$ ; confidence 0.447

125. s0908308.png ; $m : B \rightarrow A$ ; confidence 0.962

126. s09090088.png ; $\xi = \infty \in \partial D$ ; confidence 0.998

127. s09090090.png ; $V = V ( \infty ) = \{ x \in R ^ { n } : | x | > R \}$ ; confidence 0.624

128. s09101020.png ; $c = \operatorname { const } \neq 0$ ; confidence 0.470

129. s09107089.png ; $P _ { \theta } ( A | B )$ ; confidence 0.963

130. s09108054.png ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.795

131. s0911009.png ; $\lambda _ { n } = 1 / ( n + 1 ) ^ { s }$ ; confidence 0.931

132. s09114035.png ; $s _ { n } \rightarrow s$ ; confidence 0.696

133. s09114030.png ; $\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$ ; confidence 0.542

134. s09120056.png ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425

135. s12032058.png ; $S ( L )$ ; confidence 0.980

136. s09139063.png ; $x _ { 1 } ^ { 2 } = 0$ ; confidence 0.997

137. s0913909.png ; $\frac { x ^ { 2 } } { p } - \frac { y ^ { 2 } } { q } = 2 z$ ; confidence 0.932

138. s09157097.png ; $T ^ { * } Y \backslash 0$ ; confidence 0.994

139. s09158080.png ; $\Phi ( f ( w ) ) = \sigma ( \Phi ( w ) )$ ; confidence 0.999

140. s09167062.png ; $S ( B _ { n } ^ { m } )$ ; confidence 0.719

141. s09173026.png ; $H ^ { n - k } \cap S ^ { k }$ ; confidence 0.502

142. s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404

143. s09191051.png ; $\sim \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.975

144. s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233

145. s11033016.png ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902

146. s0919603.png ; $R = \{ \pi ( i ) : \square i \in I \}$ ; confidence 0.950

147. s09196011.png ; $\{ \pi ( i ) : \square i \in I _ { 0 } \}$ ; confidence 0.752

148. s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831

149. t12002014.png ; $T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$ ; confidence 0.699

150. t0922406.png ; $k = R / m$ ; confidence 0.483

151. t09225012.png ; $g ^ { ( i ) }$ ; confidence 0.484

152. t13004015.png ; $( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$ ; confidence 0.385

153. t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790

154. t13005033.png ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.998

155. t13005053.png ; $\sigma ^ { \prime } ( A )$ ; confidence 0.999

156. t12003042.png ; $\psi = \Psi ^ { \prime }$ ; confidence 0.559

157. t09247071.png ; $E _ { 1 } E _ { 2 } E _ { 3 }$ ; confidence 0.997

158. t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197

159. t092470133.png ; $R _ { T ^ { \prime \prime } }$ ; confidence 0.675

160. t11002078.png ; $M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$ ; confidence 0.076

161. t11002049.png ; $e ^ { \prime }$ ; confidence 0.559

162. t09253011.png ; $( \pi | \tau _ { 1 } | \tau _ { 2 } )$ ; confidence 0.977

163. t09260017.png ; $\theta ( z + \tau ) = \operatorname { exp } ( - 2 \pi i k z ) . \theta ( z )$ ; confidence 0.660

164. t09260081.png ; $\delta = 2$ ; confidence 0.999

165. t09260032.png ; $\operatorname { lm } A = \| \operatorname { lm } \alpha _ { \mu \nu } |$ ; confidence 0.510

166. t092600123.png ; $B = I _ { p }$ ; confidence 0.852

167. t12005046.png ; $d f _ { x } : R ^ { n } \rightarrow R ^ { p }$ ; confidence 0.932

168. t13009023.png ; $f ^ { - 1 } ( S )$ ; confidence 0.998

169. t09265044.png ; $c < 2$ ; confidence 0.987

170. t09265019.png ; $u x + v x ^ { 2 } + w x ^ { 3 } + t x ^ { 4 }$ ; confidence 0.989

171. t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295

172. t09265012.png ; $x ^ { 3 } + x y ^ { 2 }$ ; confidence 1.000

173. t120060116.png ; $E ^ { Q } ( N )$ ; confidence 0.962

174. t12006058.png ; $N \geq Z$ ; confidence 0.919

175. t09272013.png ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489

176. t09273032.png ; $M = M _ { 1 } \# M _ { 2 }$ ; confidence 0.954

177. t12008015.png ; $O _ { S } ^ { * }$ ; confidence 0.936

178. t12008049.png ; $( 5 \times 10 ^ { 6 } r ) ^ { 3 }$ ; confidence 0.525

179. t09280017.png ; $X _ { ( \tau _ { 1 } + \ldots + \tau _ { j - 1 } + 1 ) } = \ldots = X _ { ( \tau _ { 1 } + \ldots + \tau _ { j } ) }$ ; confidence 0.575

180. t092810186.png ; $B s$ ; confidence 0.576

181. t092810205.png ; $\beta ( M )$ ; confidence 0.995

182. t1301005.png ; $\square _ { H } T$ ; confidence 0.979

183. t13014052.png ; $( Q )$ ; confidence 0.999

184. t130140116.png ; $q R$ ; confidence 0.245

185. t130140169.png ; $q _ { A }$ ; confidence 0.118

186. t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505

187. t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440

188. t13015064.png ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.779

189. t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710

190. t1201505.png ; $\eta \in A \mapsto \xi \eta \in A$ ; confidence 0.962

191. t09298063.png ; $f \in S ( R ^ { n } )$ ; confidence 0.981

192. t093150622.png ; $( f _ { i } : B _ { i } \rightarrow B ) _ { i \in l }$ ; confidence 0.575

193. t093150169.png ; $F \in \gamma$ ; confidence 0.994

194. t093150743.png ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342

195. t093150395.png ; $A \wedge B$ ; confidence 0.923

196. t093150306.png ; $= C$ ; confidence 0.931

197. t093150450.png ; $\operatorname { sin } 0$ ; confidence 0.092

198. t093150393.png ; $\{ p _ { i } ^ { - 1 } U _ { i } : U _ { i } \in \mu _ { i \square } \text { and } i \in I \}$ ; confidence 0.601

199. t093150728.png ; $A ^ { * } = A \cup \{ \infty _ { A } \}$ ; confidence 0.980

200. t09316047.png ; $p _ { 1 } \otimes \sim p _ { 2 }$ ; confidence 0.782

201. t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229

202. t093180434.png ; $D ( R ^ { n + k } )$ ; confidence 0.995

203. t09323048.png ; $H \rightarrow TOP$ ; confidence 0.688

204. t093230103.png ; $\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$ ; confidence 0.066

205. t09323071.png ; $X \rightarrow P L / O$ ; confidence 0.928

206. t09326056.png ; $d \Phi$ ; confidence 0.791

207. t09326078.png ; $d = 6$ ; confidence 0.998

208. t09326038.png ; $( X ) \in M$ ; confidence 0.998

209. t09333059.png ; $r _ { 2 } \in R$ ; confidence 0.862

210. t0933407.png ; $S _ { j } ^ { k } = \Gamma _ { i j } ^ { k } - \Gamma _ { j i } ^ { k }$ ; confidence 0.505

211. t0935701.png ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391

212. t09367085.png ; $r < | w | < 1$ ; confidence 0.982

213. t09367092.png ; $d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$ ; confidence 0.470

214. t09367039.png ; $\operatorname { lim } _ { \epsilon \rightarrow 0 } d ( E _ { \epsilon } ) = d ( E )$ ; confidence 0.993

215. t0937107.png ; $x = f ( \alpha )$ ; confidence 0.993

216. t09377057.png ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104

217. t09377067.png ; $\mathfrak { A } f$ ; confidence 0.742

218. t09377043.png ; $R ^ { 0 } f$ ; confidence 0.999

219. t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864

220. t09386023.png ; $P ( S )$ ; confidence 0.765

221. t09389045.png ; $o ( N ) / N \rightarrow 0$ ; confidence 0.792

222. t093900196.png ; $T _ { 23 } n ( \operatorname { cos } \pi \omega )$ ; confidence 0.946

223. t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875

224. t093900115.png ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308

225. t093900146.png ; $Q _ { n } W ^ { k } = P _ { n } c ( W ^ { k } + \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.976

226. t093900154.png ; $g _ { k } = ( 1 + y _ { k } ) / 2$ ; confidence 0.953

227. t0939808.png ; $V = f ^ { - 1 } ( X )$ ; confidence 1.000

228. t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878

229. t09400030.png ; $f ( x ) = g ( y )$ ; confidence 1.000

230. t13021052.png ; $2 / ( 3 N / 2 )$ ; confidence 0.990

231. t09424015.png ; $\frac { a _ { 0 } } { 4 } x ^ { 2 } - \sum _ { k = 1 } ^ { \infty } \frac { a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x } { k ^ { 2 } }$ ; confidence 0.667

232. t094300134.png ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.710

233. t09430077.png ; $\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$ ; confidence 0.204

234. t09442025.png ; $\overline { U } / \partial \overline { U }$ ; confidence 0.976

235. t09444040.png ; $u _ { m } = u ( M _ { m } )$ ; confidence 0.360

236. t120200142.png ; $m > - 1$ ; confidence 0.998

237. t120200179.png ; $\operatorname { Re } G _ { 1 } ( r ) \geq B$ ; confidence 0.984

238. t094530109.png ; $\sum ( k _ { i } - 1 )$ ; confidence 0.930

239. t09454051.png ; $\{ \omega _ { n } ^ { + } ( V ) \}$ ; confidence 0.949

240. t09460022.png ; $f _ { 0 } \neq 0$ ; confidence 0.997

241. t0946003.png ; $\alpha \geq A _ { 0 }$ ; confidence 0.904

242. t09465038.png ; $\forall v \phi$ ; confidence 0.989

243. t09465066.png ; $\in M$ ; confidence 0.717

244. t09465036.png ; $( \phi \& \psi )$ ; confidence 0.997

245. t09466060.png ; $\{ f ( z ) \}$ ; confidence 1.000

246. t09466020.png ; $\phi ( z ) = \frac { 1 - z ^ { 2 } } { z } f ( z ) \in C$ ; confidence 0.993

247. u09507044.png ; $T ( X ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } X = 1 } \\ { 0 } & { \text { if } X \geq 2 } \end{array} \right.$ ; confidence 0.976

248. u0952109.png ; $f _ { \alpha } ( x ) \geq - c$ ; confidence 0.977

249. u09523081.png ; $\{ d f _ { n } / d x \}$ ; confidence 0.954

250. u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466

251. u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905

252. u09540011.png ; $( g - 1 ) ^ { n } = 0$ ; confidence 0.996

253. u09541013.png ; $U _ { n } ( K )$ ; confidence 0.987

254. u09541052.png ; $g ^ { p } = e$ ; confidence 0.978

255. u09544022.png ; $O ( \epsilon _ { N } )$ ; confidence 0.478

256. u09544020.png ; $U ( \epsilon )$ ; confidence 0.998

257. u09562096.png ; $\sum _ { k = 1 } ^ { \infty } | \alpha _ { k } | ^ { 2 } = \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } | f ( e ^ { i t } ) | ^ { 2 } d t \leq 1$ ; confidence 0.986

258. u09563071.png ; $U : B \rightarrow A$ ; confidence 0.544

259. u09568015.png ; $( n \geq 0 )$ ; confidence 1.000

260. u09582023.png ; $v ( x ) \geq f ( x )$ ; confidence 0.996

261. v096020116.png ; $f ( z ) \in K$ ; confidence 0.998

262. v096020108.png ; $\lambda \leq 0.5$ ; confidence 0.968

263. v096020147.png ; $( f ) \subseteq V ( f )$ ; confidence 0.998

264. v0960408.png ; $s ( r )$ ; confidence 0.997

265. v11002046.png ; $x \in Y ( u )$ ; confidence 0.570

266. v0963509.png ; $( a + b ) + c = a + ( b + c )$ ; confidence 0.946

267. v09635084.png ; $a \perp b$ ; confidence 0.521

268. v09635060.png ; $\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$ ; confidence 0.378

269. v09638081.png ; $u ^ { * } ( \pi )$ ; confidence 0.996

270. v096380113.png ; $\pi ^ { \prime } \oplus \theta ^ { \prime }$ ; confidence 0.992

271. v09638042.png ; $G ^ { k } ( V ) \times V$ ; confidence 0.950

272. v096380128.png ; $w : \xi \oplus \zeta \rightarrow \pi$ ; confidence 0.996

273. v09638089.png ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258

274. v09638020.png ; $X ^ { \prime } \cap \pi ^ { - 1 } ( b )$ ; confidence 0.999

275. v09645016.png ; $+ \frac { 1 } { N ! } \int _ { t _ { 0 } } ^ { t } ( t - \tau ) ^ { N _ { r } ( N + 1 ) } ( \tau ) d \tau$ ; confidence 0.696

276. v13006019.png ; $j \in ( 1 / 2 ) Z$ ; confidence 0.983

277. v130050114.png ; $1 _ { n } ( w ) = 0$ ; confidence 0.957

278. v1200207.png ; $f ^ { * } : H ^ { * } ( Y ) \rightarrow H ^ { * } ( X )$ ; confidence 0.997

279. v120020197.png ; $H ^ { n } ( S ^ { n } )$ ; confidence 0.629

280. v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259

281. v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783

282. v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119

283. v12002064.png ; $d _ { k } = rd _ { Y } M _ { k }$ ; confidence 0.623

284. v0966506.png ; $n \geq 12$ ; confidence 0.886

285. v09667018.png ; $P ^ { 2 r - k }$ ; confidence 0.936

286. v0967406.png ; $v _ { \nu } ( t _ { 0 } ) = 0$ ; confidence 0.996

287. v0967704.png ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.909

288. v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903

289. v1300709.png ; $\vec { V }$ ; confidence 0.987

290. v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887

291. v13011059.png ; $2 i$ ; confidence 0.747

292. v13011069.png ; $\theta = 2 \pi$ ; confidence 0.999

293. v13011064.png ; $U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$ ; confidence 0.768

294. v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300

295. v09690074.png ; $\phi ( U T U ^ { - 1 } ) = \phi ( T )$ ; confidence 0.999

296. v096900232.png ; $III _ { 0 }$ ; confidence 0.560

297. v096900125.png ; $P \sim P _ { 1 }$ ; confidence 0.999

298. v096900122.png ; $Q = U U ^ { * }$ ; confidence 0.977

299. v096900124.png ; $P _ { 1 } \in A$ ; confidence 0.996

300. w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/10. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/10&oldid=43828