Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/8

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 11:41, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 8 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. l061160114.png ; $x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$ ; confidence 0.802

2. l06120026.png ; $E ( T ) = \int \int _ { T } \frac { d x d y } { | x - y | }$ ; confidence 0.572

3. l05831065.png ; $F _ { n } ( - \infty ) \rightarrow F ( - \infty )$ ; confidence 0.972

4. m1200304.png ; $f _ { \theta } ( x )$ ; confidence 0.998

5. m12003057.png ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.731

6. m06207013.png ; $H _ { 2 } \times H _ { 1 }$ ; confidence 0.537

7. m11002071.png ; $f \circ R _ { 1 } = R _ { 2 } \circ f$ ; confidence 0.984

8. m13002013.png ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.738

9. m13002029.png ; $A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$ ; confidence 0.768

10. m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796

11. m06216027.png ; $p < q$ ; confidence 0.966

12. m062160173.png ; $E$ ; confidence 0.975

13. m062160147.png ; $\kappa = \mu ^ { * }$ ; confidence 0.985

14. m12009011.png ; $- i \partial / \partial x _ { j }$ ; confidence 0.526

15. m12009064.png ; $P ^ { * } ( D )$ ; confidence 0.999

16. m11005068.png ; $q ^ { - 1 } = 1 - p ^ { - 1 }$ ; confidence 1.000

17. m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329

18. m12011020.png ; $t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$ ; confidence 0.532

19. m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886

20. m12011082.png ; $\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$ ; confidence 0.743

21. m06233049.png ; $M _ { \psi } ^ { 0 }$ ; confidence 0.996

22. m06235096.png ; $\mu ^ { - 1 }$ ; confidence 0.999

23. m06236012.png ; $T _ { i j }$ ; confidence 0.337

24. m0623907.png ; $P \{ \xi ( 0 ) = j \} = p _ { j }$ ; confidence 0.551

25. m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838

26. m062490165.png ; $\Lambda = \{ \omega : x _ { S } \in B \}$ ; confidence 0.703

27. m06249054.png ; $F _ { \infty } ^ { s }$ ; confidence 0.520

28. m06249090.png ; $\alpha _ { \epsilon } ( h ) = o ( h )$ ; confidence 0.989

29. m06254054.png ; $| \theta - \frac { p } { n } | \leq \frac { 1 } { \tau q ^ { 2 } }$ ; confidence 0.999

30. m06255040.png ; $u ( y ) \geq 0$ ; confidence 0.997

31. m06255050.png ; $0 \leq w \leq v$ ; confidence 0.958

32. m06256075.png ; $K _ { y } ^ { \alpha }$ ; confidence 0.924

33. m120120128.png ; $C = Z ( Q )$ ; confidence 0.941

34. m06257039.png ; $\xi _ { k } = + 1$ ; confidence 0.992

35. m06259044.png ; $V _ { [ r ] }$ ; confidence 0.977

36. m06259032.png ; $B = 0$ ; confidence 0.833

37. m06259061.png ; $\alpha = \beta _ { 1 } \vee \ldots \vee \beta _ { r }$ ; confidence 0.964

38. m06261017.png ; $\operatorname { lim } _ { \Delta x \rightarrow 0 } \Delta y = \operatorname { lim } _ { \Delta x \rightarrow 0 } [ f ( x + \Delta x ) - f ( x ) ] = 0$ ; confidence 0.996

39. m06261090.png ; $F ^ { \prime } = f$ ; confidence 0.997

40. m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089

41. m12013029.png ; $= f ( N _ { * } ) + f ^ { \prime } ( N _ { * } ) n + \frac { f ^ { \prime \prime } ( N _ { * } ) } { 2 } n ^ { 2 } + \ldots$ ; confidence 0.619

42. m062620207.png ; $R _ { + } ^ { l }$ ; confidence 0.977

43. m06262012.png ; $b \in R ^ { l - 1 }$ ; confidence 0.980

44. m062620198.png ; $z \square ^ { ( s ) }$ ; confidence 0.776

45. m062620248.png ; $x > y > z$ ; confidence 0.999

46. m06262048.png ; $c ( t ) \geq 0$ ; confidence 1.000

47. m06263022.png ; $\int _ { - \infty } ^ { \infty } x d F ( x )$ ; confidence 1.000

48. m06269073.png ; $k \frac { \partial u } { \partial n } + h u | _ { S } = v ( x )$ ; confidence 0.973

49. m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868

50. m06306029.png ; $x _ { i + 1 } = x _ { i } - ( \alpha _ { i } \nabla \nabla f ( x _ { j } ) + \beta _ { i } I ) ^ { - 1 } \nabla f ( x _ { i } )$ ; confidence 0.559

51. m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822

52. m06310035.png ; $\hat { \theta } = X$ ; confidence 0.545

53. m06308045.png ; $f ^ { ( m ) } ( x _ { 0 } ) < 0$ ; confidence 0.978

54. m06314076.png ; $x _ { 3 } = z$ ; confidence 0.989

55. m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887

56. m0631709.png ; $d \sigma ( t )$ ; confidence 0.999

57. m063240572.png ; $\Lambda ( f ) \geq 0$ ; confidence 0.995

58. m063240457.png ; $\mu _ { i } ( X _ { i } ) = 1$ ; confidence 0.990

59. m063240678.png ; $E = E ^ { \prime }$ ; confidence 0.996

60. m063240428.png ; $S _ { 1 } \times S _ { 2 }$ ; confidence 0.981

61. m063240221.png ; $E \in S ( R )$ ; confidence 0.988

62. m063240749.png ; $\prod x$ ; confidence 0.487

63. m0633503.png ; $\int _ { - 1 } ^ { 1 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } f ( x ) d x \approx \frac { \pi } { N } \sum _ { k = 1 } ^ { N } f ( \operatorname { cos } \frac { 2 k - 1 } { 2 N } \pi )$ ; confidence 0.978

64. m11011038.png ; $\square _ { q } F _ { p - 1 }$ ; confidence 0.930

65. m06337017.png ; $t = t _ { 0 } > 0$ ; confidence 0.996

66. m063460143.png ; $p \in P \backslash N$ ; confidence 0.997

67. m063460237.png ; $( f ) = D$ ; confidence 0.999

68. m06346056.png ; $D ( z ) \neq 0$ ; confidence 0.995

69. m063460176.png ; $\psi _ { z } \neq 0$ ; confidence 0.993

70. m063460182.png ; $z \in N$ ; confidence 0.568

71. m06359074.png ; $F \mapsto F ( P )$ ; confidence 0.864

72. m06371076.png ; $\int _ { c } ^ { \infty } f ( x ) d x$ ; confidence 0.991

73. m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222

74. m11013041.png ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822

75. m11013015.png ; $E S$ ; confidence 0.930

76. m063760111.png ; $0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$ ; confidence 0.355

77. m06380058.png ; $\partial W _ { 1 } = M$ ; confidence 0.996

78. m06380081.png ; $\sigma ( W )$ ; confidence 0.989

79. m06380038.png ; $\theta _ { n } ( \partial \pi )$ ; confidence 0.997

80. m06391025.png ; $\{ p _ { \theta } ( \omega ) = \frac { d p } { d \mu } ( \omega ) : \theta \in \Theta \}$ ; confidence 0.987

81. m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858

82. m06392082.png ; $n \geq 9$ ; confidence 0.998

83. m063920116.png ; $\int \int K d S$ ; confidence 0.865

84. m06398045.png ; $\| x _ { k } - x ^ { * } \| \leq C q ^ { k }$ ; confidence 0.985

85. m06399032.png ; $A = \pi r ^ { 2 }$ ; confidence 0.999

86. m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473

87. m06400065.png ; $W ( N )$ ; confidence 0.988

88. m0640004.png ; $\epsilon > 0$ ; confidence 0.971

89. m064000127.png ; $F = W _ { 2 } ^ { - 1 } ( \Omega )$ ; confidence 0.999

90. m12021026.png ; $\lambda K + t$ ; confidence 0.994

91. m064250151.png ; $\tau \cup A C \cup B C$ ; confidence 0.892

92. m064250142.png ; $d y / d s \geq 0$ ; confidence 0.997

93. m064180110.png ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128

94. m064190102.png ; $u | _ { \Gamma } = \psi$ ; confidence 0.930

95. m06442050.png ; $k = m / 2$ ; confidence 0.948

96. m064430169.png ; $GL _ { 2 } ( R )$ ; confidence 0.691

97. m064430225.png ; $\operatorname { lm } A ( \tau )$ ; confidence 0.945

98. m06443090.png ; $B O$ ; confidence 0.877

99. m064430134.png ; $w = \lambda ( z )$ ; confidence 0.985

100. m06444056.png ; $c = 0$ ; confidence 0.874

101. m11018050.png ; $J ( F G / I ) = 0$ ; confidence 0.991

102. m0644606.png ; $d ( x + y ) + d ( x y ) = d ( x ) + d ( y )$ ; confidence 0.999

103. m0645406.png ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.811

104. m06455029.png ; $G \rightarrow R _ { + } ^ { * }$ ; confidence 0.778

105. m06458025.png ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849

106. m064590192.png ; $\alpha p$ ; confidence 0.503

107. m06466019.png ; $C _ { \gamma } = C _ { \gamma _ { 1 } } C _ { \gamma _ { 2 } }$ ; confidence 0.997

108. m064700127.png ; $t \in P ^ { 1 }$ ; confidence 0.984

109. m06470068.png ; $\partial V _ { t }$ ; confidence 0.996

110. m0647004.png ; $\alpha = \gamma ( 0 )$ ; confidence 0.961

111. m06471081.png ; $f ( z ) = f ( x + i y )$ ; confidence 1.000

112. m0647206.png ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845

113. m06483029.png ; $f ( x ^ { \prime } ) < t$ ; confidence 1.000

114. m06487010.png ; $\xi = x _ { m }$ ; confidence 0.952

115. m13022071.png ; $T$ ; confidence 0.520

116. m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742

117. m06491014.png ; $Y ( K )$ ; confidence 0.999

118. m12023042.png ; $( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$ ; confidence 0.971

119. m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752

120. m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951

121. m06499012.png ; $f : M \rightarrow R$ ; confidence 0.936

122. m06499028.png ; $\sum _ { j = 0 } ^ { i } ( - 1 ) ^ { j } m _ { i - j } \geq \sum _ { j = 0 } ^ { i } ( - 1 ) ^ { j } b _ { i - j }$ ; confidence 0.973

123. m06495010.png ; $V _ { 1 } = \emptyset$ ; confidence 0.731

124. m11021026.png ; $\alpha = 4 \pi$ ; confidence 1.000

125. m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413

126. m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163

127. m0650309.png ; $x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$ ; confidence 0.056

128. m12025047.png ; $L C ^ { k - 1 }$ ; confidence 0.734

129. m065140117.png ; $p _ { 1 } + \ldots + p _ { m } = p$ ; confidence 0.769

130. m06514041.png ; $S _ { n }$ ; confidence 0.963

131. m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229

132. m06518046.png ; $\alpha : A \rightarrow A _ { 1 }$ ; confidence 0.999

133. m11022016.png ; $\lambda ^ { * } \in R ^ { m }$ ; confidence 0.957

134. m06525013.png ; $G _ { 1 } / N$ ; confidence 0.991

135. m06530022.png ; $\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$ ; confidence 0.927

136. m13025061.png ; $\int | \rho _ { \varepsilon } ( x ) | d x$ ; confidence 0.965

137. m130250103.png ; $s > n / 2$ ; confidence 0.999

138. m13025065.png ; $M _ { 3 } ( R ^ { n } ) = \{$ ; confidence 0.724

139. m06544062.png ; $d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$ ; confidence 0.489

140. m06544031.png ; $\Phi _ { t } = id$ ; confidence 0.507

141. m06544030.png ; $E = \{ e \}$ ; confidence 0.981

142. m06546014.png ; $( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$ ; confidence 0.351

143. m06550014.png ; $P ( \mathfrak { m } / \mathfrak { m } ^ { 2 } )$ ; confidence 0.523

144. m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532

145. m13026036.png ; $x \lambda ( y ) = \rho ( x ) y$ ; confidence 0.966

146. m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421

147. m06556075.png ; $\frac { | z | ^ { p } } { ( 1 + | z | ) ^ { 2 p } } \leq | f ( z ) | \leq \frac { | z | ^ { p } } { ( 1 - | z | ) ^ { 2 p } }$ ; confidence 0.972

148. m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870

149. m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883

150. m0655809.png ; $P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$ ; confidence 0.795

151. n13003066.png ; $\operatorname { Re } ( \lambda )$ ; confidence 0.992

152. n1200405.png ; $A _ { i \psi }$ ; confidence 0.179

153. n1100102.png ; $f \in L _ { \infty } ( T )$ ; confidence 0.971

154. n11001011.png ; $L _ { \infty } ( T )$ ; confidence 0.979

155. n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905

156. n06634090.png ; $x \in V _ { n }$ ; confidence 0.777

157. n06634047.png ; $X _ { i } \subset \Delta _ { 1 } ^ { i }$ ; confidence 0.988

158. n06636034.png ; $\{ x _ { \alpha } \} _ { \alpha \in \Sigma }$ ; confidence 0.994

159. n06641020.png ; $x \in b M$ ; confidence 0.705

160. n06641023.png ; $\overline { \partial } f = \phi$ ; confidence 0.995

161. n06644040.png ; $\sum _ { n = 0 } ^ { \infty } A ^ { n } f$ ; confidence 0.994

162. n06648031.png ; $\phi _ { \alpha } ( f ) = w _ { \alpha }$ ; confidence 0.945

163. n06649018.png ; $f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$ ; confidence 0.806

164. n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860

165. n06656013.png ; $A ( u ) = 0$ ; confidence 1.000

166. n06663069.png ; $\Delta _ { k } ^ { k } f ^ { ( s ) }$ ; confidence 0.968

167. n066630108.png ; $M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j }$ ; confidence 0.662

168. n06663062.png ; $0 < r - s < k$ ; confidence 0.996

169. n06679025.png ; $D \cap \{ x ^ { 1 } = c \}$ ; confidence 0.983

170. n06684017.png ; $\{ \psi _ { i } \} _ { 0 } ^ { m }$ ; confidence 0.581

171. n06689067.png ; $v = 1.1 m / sec$ ; confidence 0.848

172. n06689035.png ; $b = 7$ ; confidence 0.999

173. n06690064.png ; $G \rightarrow A$ ; confidence 0.998

174. n13007025.png ; $m ( B ) = 0$ ; confidence 1.000

175. n06698028.png ; $Q ^ { \prime } \subset Q$ ; confidence 0.984

176. n06708019.png ; $y ( 0 ) = y ^ { \prime }$ ; confidence 0.740

177. n06708029.png ; $\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$ ; confidence 0.711

178. n06708018.png ; $y ^ { * } = \alpha ( g ^ { * } )$ ; confidence 0.950

179. n06711026.png ; $\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$ ; confidence 0.538

180. n06711048.png ; $\phi _ { i } / \partial x _ { Y }$ ; confidence 0.338

181. n067150173.png ; $x + h \in G$ ; confidence 0.992

182. n067150152.png ; $A : G \rightarrow Y$ ; confidence 0.991

183. n12011031.png ; $x \in K$ ; confidence 0.658

184. n12011011.png ; $\xi ( x ) = 1$ ; confidence 0.999

185. n06728058.png ; $\pi / \rho$ ; confidence 0.416

186. n06728084.png ; $y ^ { \prime \prime \prime } = \lambda y$ ; confidence 0.979

187. n06731043.png ; $B O$ ; confidence 0.799

188. n0673605.png ; $\phi ( x ) \geq 0$ ; confidence 0.999

189. n06740041.png ; $U$ ; confidence 0.698

190. n06743015.png ; $\sum _ { k = 1 } ^ { \infty } \| u _ { k } \| = \sum _ { k = 1 } ^ { \infty } 1 / k$ ; confidence 0.925

191. n067520368.png ; $\phi _ { i } ( 0 ) = 0$ ; confidence 1.000

192. n067520122.png ; $j \geq q + 1$ ; confidence 0.999

193. n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323

194. n067520250.png ; $d j \neq 0$ ; confidence 0.877

195. n067520303.png ; $A \simeq K$ ; confidence 0.550

196. n06758032.png ; $N _ { G } ( H )$ ; confidence 0.982

197. n06761056.png ; $( d \nu ) ( x _ { i } ) ( T _ { i } )$ ; confidence 0.993

198. n06764043.png ; $\Omega _ { X }$ ; confidence 0.976

199. n06776016.png ; $N ( A ^ { * } ) = \{ 0 \}$ ; confidence 0.998

200. n06784093.png ; $A \in L _ { \infty } ( H )$ ; confidence 0.994

201. n067850200.png ; $\operatorname { tr } _ { \sigma } A$ ; confidence 0.814

202. n067850111.png ; $u \in E ^ { \prime } \otimes - E$ ; confidence 0.540

203. n067850131.png ; $u = \operatorname { tr } \Gamma ( u )$ ; confidence 0.766

204. n067860258.png ; $V \subset \rho U$ ; confidence 0.940

205. n0679002.png ; $x y = 40$ ; confidence 1.000

206. n06790027.png ; $\alpha + b = b + \alpha$ ; confidence 0.739

207. n06794014.png ; $N > 5$ ; confidence 0.901

208. n06796016.png ; $q 2 = 6$ ; confidence 0.507

209. n0679601.png ; $12$ ; confidence 0.490

210. n06796020.png ; $q 2 = 4$ ; confidence 0.504

211. o12001037.png ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316

212. o13001044.png ; $F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$ ; confidence 0.936

213. o11003071.png ; $I _ { p } ( L )$ ; confidence 0.985

214. o11003037.png ; $K _ { \omega }$ ; confidence 0.958

215. o13003024.png ; $\overline { P _ { 8 } }$ ; confidence 0.610

216. o1200204.png ; $\alpha = 1 / 2$ ; confidence 0.933

217. o11007085.png ; $K _ { 10 }$ ; confidence 0.993

218. o11007062.png ; $K$ ; confidence 0.967

219. o0681907.png ; $T ( t ) x$ ; confidence 0.794

220. o06821028.png ; $X = \sum _ { i } X ^ { i } \partial / \partial x ^ { i }$ ; confidence 0.987

221. o06825018.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } + 0$ ; confidence 0.628

222. o06833067.png ; $e ^ { - \lambda s }$ ; confidence 0.999

223. o068350148.png ; $\phi \in D ( A )$ ; confidence 0.998

224. o13005095.png ; $v \in G$ ; confidence 0.413

225. o13005087.png ; $v _ { n } \in G$ ; confidence 0.357

226. o06837057.png ; $x _ { C }$ ; confidence 0.256

227. o06837017.png ; $( \alpha b ) \sigma = \alpha \sigma b \sigma$ ; confidence 0.467

228. o130060187.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449

229. o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897

230. o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147

231. o0684606.png ; $x ( t _ { 1 } ) = x ^ { 1 } \in R ^ { n }$ ; confidence 0.985

232. o06849072.png ; $2 \leq t \leq 3$ ; confidence 0.999

233. o06850051.png ; $\sigma \leq t \leq \theta$ ; confidence 0.947

234. o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245

235. o07001011.png ; $G / G _ { X }$ ; confidence 0.936

236. o0700104.png ; $G ( x ) = \{ g ( x ) : g \in G \}$ ; confidence 0.999

237. o07004017.png ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903

238. o07006030.png ; $\beta ( x ) \neq 0$ ; confidence 0.999

239. o070070117.png ; $\{ Z _ { n } \}$ ; confidence 0.984

240. o070070118.png ; $Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$ ; confidence 0.491

241. o07007051.png ; $W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$ ; confidence 0.738

242. o07015054.png ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291

243. o13008026.png ; $C _ { \psi }$ ; confidence 0.409

244. o13008035.png ; $C _ { \varphi }$ ; confidence 0.982

245. o07022036.png ; $E$ ; confidence 0.845

246. o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491

247. o07024025.png ; $- \beta V$ ; confidence 0.966

248. o07024014.png ; $6 \pi \eta \alpha$ ; confidence 0.422

249. o0702405.png ; $d W ( t ) / d t = W ^ { \prime } ( t )$ ; confidence 0.993

250. o07031053.png ; $N ( n ) \rightarrow \infty$ ; confidence 0.992

251. o070310119.png ; $A \perp A ^ { T }$ ; confidence 0.994

252. o07029017.png ; $\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$ ; confidence 0.937

253. o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826

254. o07037028.png ; $\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$ ; confidence 0.076

255. p07221037.png ; $F ^ { k }$ ; confidence 0.862

256. p0723004.png ; $F ( H )$ ; confidence 0.998

257. p07235016.png ; $h > 1$ ; confidence 0.985

258. p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887

259. p07237025.png ; $\underline { H } \square _ { f }$ ; confidence 0.812

260. p0724304.png ; $B \operatorname { ccos } ( \omega t + \psi )$ ; confidence 0.580

261. p072430105.png ; $\phi _ { im }$ ; confidence 0.294

262. p0724307.png ; $\epsilon \ll 1$ ; confidence 0.957

263. p07243078.png ; $| V _ { m n } | \ll | E _ { n } ^ { ( 0 ) } - E _ { m } ^ { ( 0 ) } |$ ; confidence 0.535

264. p110120321.png ; $4 x$ ; confidence 0.375

265. p110120376.png ; $E _ { i } ( x )$ ; confidence 0.976

266. p110120339.png ; $\eta ( x ) \in \eta$ ; confidence 0.999

267. p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414

268. p11012025.png ; $\lambda < \mu$ ; confidence 1.000

269. p110120432.png ; $\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$ ; confidence 0.191

270. p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131

271. p110120428.png ; $P _ { n } ( f )$ ; confidence 0.919

272. p07246025.png ; $S \square ^ { * }$ ; confidence 0.590

273. p07251086.png ; $T ^ { * } U$ ; confidence 0.999

274. p07251047.png ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905

275. p072530183.png ; $I ( G _ { p } )$ ; confidence 0.801

276. p07253081.png ; $d f ^ { j }$ ; confidence 0.726

277. p07101037.png ; $p _ { i }$ ; confidence 0.459

278. p0726706.png ; $\operatorname { sch } / S$ ; confidence 0.616

279. p07267050.png ; $f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$ ; confidence 0.802

280. p07270029.png ; $f ( L )$ ; confidence 0.999

281. p07271076.png ; $t ( P )$ ; confidence 0.999

282. p072710140.png ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.541

283. p1201308.png ; $\theta$ ; confidence 1.000

284. p12013011.png ; $n > 1$ ; confidence 0.999

285. p12014048.png ; $E = E$ ; confidence 0.907

286. p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755

287. p0727608.png ; $f ( x ) \mapsto \hat { f } ( y )$ ; confidence 0.970

288. p07283021.png ; $\epsilon _ { i j } ^ { k }$ ; confidence 0.400

289. p072830109.png ; $\sigma _ { i j } ( t )$ ; confidence 0.998

290. p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432

291. p072850146.png ; $H _ { k } ( M ^ { n } )$ ; confidence 0.995

292. p072850150.png ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406

293. p0728502.png ; $_ { k }$ ; confidence 0.179

294. p07288011.png ; $\{ z _ { k } \} \subset \Delta$ ; confidence 0.994

295. p072930169.png ; $t _ { \gamma }$ ; confidence 0.533

296. p07293055.png ; $\sigma _ { 2 n } = 2 \pi ^ { n } / ( n - 1 ) !$ ; confidence 0.994

297. p072930108.png ; $u \in C ^ { 2 } ( D )$ ; confidence 0.987

298. p07289041.png ; $p _ { 01 } p _ { 23 } + p _ { 02 } p _ { 31 } + p _ { 03 } p _ { 12 } = 0$ ; confidence 0.676

299. p1101505.png ; $x \preceq y \Rightarrow z x t \preceq x y t$ ; confidence 0.920

300. p07295010.png ; $w ( z ) = \int _ { \gamma } ( t - z ) ^ { \mu + n - 1 } u ( t ) d t$ ; confidence 0.937

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/8. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/8&oldid=43826