User:Maximilian Janisch/latexlist/latex/7
List
1. ; $S = \frac { K } { 3 }$ ; confidence 0.850
2. ; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382
3. ; $- \infty < a < + \infty$ ; confidence 0.959
4. ; $3 a$ ; confidence 0.497
5. ; $\overline { \rho } _ { L }$ ; confidence 0.896
6. ; $p ^ { t } ( . )$ ; confidence 0.817
7. ; $c ( I ) = \frac { 1 } { 2 }$ ; confidence 0.667
8. ; $\Theta$ ; confidence 0.952
9. ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
10. ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921
11. ; $\alpha ( \lambda ) = \alpha _ { - } ( \lambda ) \alpha _ { + } ( \lambda )$ ; confidence 0.598
12. ; $0 < \alpha < a$ ; confidence 0.971
13. ; $h ( \lambda )$ ; confidence 1.000
14. ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952
15. ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
16. ; $\{ \alpha _ { i } ( x ) \}$ ; confidence 0.971
17. ; $| t - \tau |$ ; confidence 0.984
18. ; $\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$ ; confidence 0.954
19. ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895
20. ; $\frac { \partial } { \partial z } = \frac { 1 } { 2 } ( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } )$ ; confidence 0.997
21. ; $\partial D \times D$ ; confidence 0.998
22. ; $g \in E$ ; confidence 0.988
23. ; $T f _ { n } \rightarrow 0$ ; confidence 0.976
24. ; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981
25. ; $T _ { W } ^ { 2 k + 1 } ( X )$ ; confidence 0.984
26. ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
27. ; $Y = C$ ; confidence 0.871
28. ; $\{ f _ { \alpha } : \alpha \in \mathfrak { A } \}$ ; confidence 0.968
29. ; $m \times ( n + 1 )$ ; confidence 1.000
30. ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
31. ; $\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$ ; confidence 0.981
32. ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
33. ; $\Delta ^ { i }$ ; confidence 0.491
34. ; $B = Y \backslash 0$ ; confidence 0.999
35. ; $x < \varrho y$ ; confidence 0.723
36. ; $T \subset R ^ { 1 }$ ; confidence 0.989
37. ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
38. ; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397
39. ; $x \leq z \leq y$ ; confidence 0.995
40. ; $Z \in G$ ; confidence 0.401
41. ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766
42. ; $| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 }$ ; confidence 0.554
43. ; $s > - \infty$ ; confidence 0.985
44. ; $< 2 a$ ; confidence 0.500
45. ; $y \geq x \geq 0$ ; confidence 0.999
46. ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
47. ; $y = Arc$ ; confidence 0.482
48. ; $\operatorname { cos } ^ { - 1 } x$ ; confidence 1.000
49. ; $F [ \phi ( w ) ]$ ; confidence 0.983
50. ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455
51. ; $P ^ { N } ( k )$ ; confidence 0.999
52. ; $L ^ { \prime }$ ; confidence 0.256
53. ; $O _ { X } ( 1 ) = O ( 1 )$ ; confidence 0.996
54. ; $f ( x ^ { * } x ) \leq f ( 1 ) r ( x ^ { * } x )$ ; confidence 0.984
55. ; $\omega ^ { \beta }$ ; confidence 0.626
56. ; $0 \in R ^ { 3 }$ ; confidence 0.983
57. ; $H = 0$ ; confidence 0.999
58. ; $m s$ ; confidence 0.683
59. ; $\gamma = 7 / 4$ ; confidence 0.659
60. ; $p : G \rightarrow G$ ; confidence 0.995
61. ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
62. ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775
63. ; $E ^ { 2 k + 1 }$ ; confidence 0.996
64. ; $( = 2 / \pi )$ ; confidence 0.994
65. ; $F _ { t } : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.989
66. ; $Y \times t$ ; confidence 0.546
67. ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
68. ; $\kappa _ { k } = a _ { n n } ^ { ( k ) }$ ; confidence 0.556
69. ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371
70. ; $F _ { 0 }$ ; confidence 0.994
71. ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
72. ; $p < 12000000$ ; confidence 1.000
73. ; $\lambda _ { p } ( K / k ) = \lambda ( X )$ ; confidence 0.997
74. ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
75. ; $\overline { Q } _ { p }$ ; confidence 0.689
76. ; $\mu _ { m }$ ; confidence 0.969
77. ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
78. ; $dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$ ; confidence 0.565
79. ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
80. ; $e _ { 1 } = ( 2 - k ^ { 2 } ) / 3$ ; confidence 0.995
81. ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
82. ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916
83. ; $x = B x + g$ ; confidence 0.998
84. ; $\operatorname { log } F \leq 100$ ; confidence 0.843
85. ; $f _ { 0 } ( \Delta )$ ; confidence 0.998
86. ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051
87. ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
88. ; $B M O$ ; confidence 0.973
89. ; $K ^ { * }$ ; confidence 0.718
90. ; $\operatorname { cr } ( K )$ ; confidence 0.995
91. ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
92. ; $M ^ { ( 2 ) }$ ; confidence 0.998
93. ; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$ ; confidence 0.972
94. ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
95. ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
96. ; $\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$ ; confidence 0.994
97. ; $t = [ \xi _ { E } ]$ ; confidence 0.983
98. ; $T ( X )$ ; confidence 0.996
99. ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$ ; confidence 0.998
100. ; $h = K \eta \leq 1 / 2$ ; confidence 0.997
101. ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
102. ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
103. ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
104. ; $T ( s )$ ; confidence 1.000
105. ; $\overline { 9 } _ { 42 }$ ; confidence 0.683
106. ; $h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$ ; confidence 0.989
107. ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961
108. ; $m \geq m _ { 0 }$ ; confidence 0.997
109. ; $z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$ ; confidence 0.967
110. ; $- w _ { 0 } ( \chi )$ ; confidence 0.944
111. ; $W _ { C }$ ; confidence 0.473
112. ; $K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$ ; confidence 0.995
113. ; $K _ { \mu }$ ; confidence 0.997
114. ; $K _ { 0 } ^ { 4 k + 2 }$ ; confidence 0.990
115. ; $\Delta u = - f ( x )$ ; confidence 0.986
116. ; $u | _ { \Sigma } = 0$ ; confidence 0.837
117. ; $R \phi / 6$ ; confidence 0.994
118. ; $\mu = m c / \hbar$ ; confidence 0.999
119. ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
120. ; $\partial / \partial x ^ { \alpha } \rightarrow ( \partial / \partial x ^ { \alpha } ) - i e A _ { \alpha } / \hbar$ ; confidence 0.973
121. ; $\Omega ( \Gamma )$ ; confidence 1.000
122. ; $\Gamma 20$ ; confidence 0.310
123. ; $D _ { 1 } / \Gamma$ ; confidence 0.999
124. ; $\frac { 1 } { 2 \pi } \{ \text { hyperbolic area of } \Omega \backslash \Gamma \} \leq 2 ( N - 1 )$ ; confidence 0.926
125. ; $\hat { M } _ { 0 }$ ; confidence 0.537
126. ; $Q _ { 1 } : A \rightarrow T ^ { \prime } A T$ ; confidence 0.990
127. ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
128. ; $f ( z ) = z + \ldots$ ; confidence 0.768
129. ; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702
130. ; $I _ { \Gamma } ( x )$ ; confidence 0.999
131. ; $A _ { t } ^ { * }$ ; confidence 0.985
132. ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
133. ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480
134. ; $( \partial ^ { 2 } / \partial x \partial t ) u = \operatorname { sin } u$ ; confidence 0.562
135. ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950
136. ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
137. ; $c ( A ) \subset R \cup \{ \infty \}$ ; confidence 0.588
138. ; $C = C ^ { * }$ ; confidence 0.990
139. ; $W _ { \alpha } ( P ) \subseteq ( D _ { \alpha } ) ^ { n }$ ; confidence 0.991
140. ; $D _ { \alpha }$ ; confidence 0.374
141. ; $W _ { \alpha } ( B \supset C ) = T \leftrightarrows$ ; confidence 0.637
142. ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479
143. ; $\eta ( \epsilon ) \rightarrow 0$ ; confidence 0.993
144. ; $\frac { d \xi } { d t } = \epsilon X _ { 0 } ( \xi ) + \epsilon ^ { 2 } P _ { 2 } ( \xi ) + \ldots + \epsilon ^ { m } P _ { m } ( \xi )$ ; confidence 0.966
145. ; $\xi = \xi _ { 0 } ( \phi )$ ; confidence 0.999
146. ; $\mu _ { n } ( P \| Q ) =$ ; confidence 0.972
147. ; $P = Q$ ; confidence 0.998
148. ; $E \neq \emptyset$ ; confidence 0.475
149. ; $E = \emptyset$ ; confidence 0.977
150. ; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933
151. ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694
152. ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
153. ; $p : X \rightarrow S$ ; confidence 0.998
154. ; $R ^ { k } p \times ( F )$ ; confidence 0.519
155. ; $x \preceq y$ ; confidence 0.956
156. ; $M ( E ) = \vec { X }$ ; confidence 0.493
157. ; $c \rightarrow N$ ; confidence 0.335
158. ; $\overline { B } \rightarrow \overline { B }$ ; confidence 0.985
159. ; $a \rightarrow a b d ^ { 6 }$ ; confidence 0.569
160. ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
161. ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
162. ; $1 \leq p < + \infty$ ; confidence 0.999
163. ; $3 N + k + m$ ; confidence 0.919
164. ; $\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$ ; confidence 0.944
165. ; $\mu$ ; confidence 0.335
166. ; $x g$ ; confidence 0.734
167. ; $T + V = h$ ; confidence 0.994
168. ; $v ( P ) - v ( D )$ ; confidence 0.999
169. ; $x ^ { ( 0 ) } = 1$ ; confidence 0.976
170. ; $M N$ ; confidence 0.867
171. ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
172. ; $( M N ) \in \Lambda$ ; confidence 0.998
173. ; $\equiv \lambda x y \cdot x$ ; confidence 0.709
174. ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
175. ; $k ^ { 2 } ( \tau ) = \lambda$ ; confidence 0.999
176. ; $D = 2 \gamma k T / M$ ; confidence 0.990
177. ; $T _ { F }$ ; confidence 0.455
178. ; $T _ { E } : U \rightarrow U$ ; confidence 0.704
179. ; $v \in C ( \overline { G } )$ ; confidence 0.795
180. ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
181. ; $| t | ^ { - 1 }$ ; confidence 1.000
182. ; $E = \frac { m } { 2 } ( \dot { x } \square _ { 1 } ^ { 2 } + \dot { x } \square _ { 2 } ^ { 2 } + \dot { x } \square _ { 3 } ^ { 2 } ) + \frac { \kappa } { r }$ ; confidence 0.586
183. ; $\sqrt { 2 }$ ; confidence 0.155
184. ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
185. ; $U _ { 0 } = 1$ ; confidence 0.997
186. ; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738
187. ; $E ( \mu _ { n } / n )$ ; confidence 0.725
188. ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
189. ; $31$ ; confidence 0.915
190. ; $\mu \approx 18.431$ ; confidence 0.997
191. ; $4.60$ ; confidence 0.967
192. ; $E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$ ; confidence 0.681
193. ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
194. ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.580
195. ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776
196. ; $H \phi$ ; confidence 0.878
197. ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
198. ; $\phi \in H$ ; confidence 0.981
199. ; $B \subset X ^ { * }$ ; confidence 0.699
200. ; $v = v ( t )$ ; confidence 0.987
201. ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961
202. ; $\{ i _ { k } \}$ ; confidence 0.773
203. ; $\zeta = 0$ ; confidence 0.999
204. ; $- \operatorname { log } | \zeta |$ ; confidence 0.998
205. ; $0 < r < \operatorname { tanh } \pi / 4$ ; confidence 0.998
206. ; $\operatorname { grad } \phi ( \zeta ) \neq 0$ ; confidence 0.967
207. ; $x \# y = x y + y x - \frac { 2 } { n + 1 } ( \operatorname { Tr } x y ) l$ ; confidence 0.625
208. ; $( x y ) x = y ( y x )$ ; confidence 1.000
209. ; $\mathfrak { A } ^ { - }$ ; confidence 0.906
210. ; $S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$ ; confidence 0.980
211. ; $x$ ; confidence 0.899
212. ; $P _ { 8 }$ ; confidence 0.799
213. ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
214. ; $\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$ ; confidence 0.634
215. ; $0 \leq p \leq n / 2$ ; confidence 0.998
216. ; $A _ { I l }$ ; confidence 0.608
217. ; $L ( H )$ ; confidence 0.995
218. ; $Q _ { A }$ ; confidence 0.136
219. ; $S \cap R ( G ) = ( e )$ ; confidence 0.872
220. ; $x ( 1 )$ ; confidence 1.000
221. ; $Z \times T$ ; confidence 0.994
222. ; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708
223. ; $G \subset N ( F )$ ; confidence 0.979
224. ; $\pi _ { 1 } ( G ) \cong \Gamma ( G ) / \Gamma _ { 0 }$ ; confidence 0.992
225. ; $l _ { k } ( A )$ ; confidence 0.348
226. ; $\epsilon$ ; confidence 0.882
227. ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405
228. ; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711
229. ; $R ^ { n } \times R ^ { n }$ ; confidence 0.554
230. ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
231. ; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680
232. ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
233. ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845
234. ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
235. ; $- \Delta u + c u$ ; confidence 0.993
236. ; $Z y \rightarrow \infty$ ; confidence 0.270
237. ; $y = \operatorname { sin } ( 1 / x )$ ; confidence 1.000
238. ; $f _ { h } \in F _ { k }$ ; confidence 0.549
239. ; $p i n$ ; confidence 0.132
240. ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
241. ; $L _ { h } u _ { k } = f _ { k }$ ; confidence 0.508
242. ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712
243. ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851
244. ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
245. ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$ ; confidence 0.681
246. ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
247. ; $A ^ { ( 0 ) }$ ; confidence 0.506
248. ; $\dot { u } = A _ { n } u$ ; confidence 0.195
249. ; $\operatorname { ln } t$ ; confidence 0.999
250. ; $T _ { \Delta }$ ; confidence 0.636
251. ; $\lambda \geq \gamma$ ; confidence 0.474
252. ; $\Gamma _ { 0 } ( . )$ ; confidence 0.995
253. ; $H ^ { k }$ ; confidence 0.998
254. ; $v \in ( 1 - t ) V$ ; confidence 0.837
255. ; $C _ { 0 } ( R )$ ; confidence 0.976
256. ; $A -$ ; confidence 0.967
257. ; $x ( t ) \equiv 0$ ; confidence 0.999
258. ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867
259. ; $X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$ ; confidence 0.977
260. ; $Y ( t ) = X ( t ) C$ ; confidence 0.998
261. ; $W ( t ) \neq 0$ ; confidence 0.995
262. ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
263. ; $\dot { y } = - A ^ { T } ( t ) y$ ; confidence 0.993
264. ; $Q _ { 3 } ( b )$ ; confidence 0.962
265. ; $x = F ( t ) y$ ; confidence 0.992
266. ; $\rho ^ { ( j ) }$ ; confidence 0.828
267. ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892
268. ; $| \epsilon | < \epsilon$ ; confidence 0.461
269. ; $\frac { d z } { d t } = - A ( t ) ^ { * } Z$ ; confidence 0.495
270. ; $L ( 0 ) = 0$ ; confidence 1.000
271. ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
272. ; $f \in H _ { p } ^ { \alpha }$ ; confidence 0.996
273. ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801
274. ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
275. ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066
276. ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399
277. ; $\alpha = E X _ { 1 }$ ; confidence 0.670
278. ; $d ( A )$ ; confidence 0.998
279. ; $\in \Theta$ ; confidence 0.953
280. ; $m = n = 1$ ; confidence 0.998
281. ; $\left. \begin{array} { c c c } { R } & { \stackrel { \pi _ { 2 } \mu } { \rightarrow } } & { B } \\ { \pi _ { 1 } \mu \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { \alpha } } & { C } \end{array} \right.$ ; confidence 0.590
282. ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
283. ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912
284. ; $w \in T V$ ; confidence 0.524
285. ; $\int \frac { d x } { x } = \operatorname { ln } | x | + C$ ; confidence 0.986
286. ; $\pi < \operatorname { arg } z \leq \pi$ ; confidence 0.972
287. ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
288. ; $Q \alpha = Q \beta \gamma$ ; confidence 0.989
289. ; $\operatorname { inv } ( x )$ ; confidence 0.875
290. ; $\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$ ; confidence 0.659
291. ; $b \in Q$ ; confidence 0.934
292. ; $Q _ { i - 1 } / Q _ { i }$ ; confidence 0.640
293. ; $( S ^ { 1 } )$ ; confidence 0.472
294. ; $z = e ^ { i \theta }$ ; confidence 0.999
295. ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905
296. ; $f ^ { \prime } ( x ) = 0$ ; confidence 1.000
297. ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
298. ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953
299. ; $\lambda _ { j } + \overline { \lambda } _ { k } = 0$ ; confidence 0.991
300. ; $V _ { 0 } \subset E$ ; confidence 0.979
Maximilian Janisch/latexlist/latex/7. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/7&oldid=43825