Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/7

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 11:41, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 7 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850

2. i05097047.png ; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382

3. i05100028.png ; $- \infty < a < + \infty$ ; confidence 0.959

4. i05104010.png ; $3 a$ ; confidence 0.497

5. i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896

6. i051150191.png ; $p ^ { t } ( . )$ ; confidence 0.817

7. i05107042.png ; $c ( I ) = \frac { 1 } { 2 }$ ; confidence 0.667

8. i05109035.png ; $\Theta$ ; confidence 0.952

9. i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946

10. i0513609.png ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921

11. i051410114.png ; $\alpha ( \lambda ) = \alpha _ { - } ( \lambda ) \alpha _ { + } ( \lambda )$ ; confidence 0.598

12. i05141058.png ; $0 < \alpha < a$ ; confidence 0.971

13. i05141060.png ; $h ( \lambda )$ ; confidence 1.000

14. i05143058.png ; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952

15. i05143039.png ; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810

16. i05143036.png ; $\{ \alpha _ { i } ( x ) \}$ ; confidence 0.971

17. i05156047.png ; $| t - \tau |$ ; confidence 0.984

18. i051620138.png ; $\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$ ; confidence 0.954

19. i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895

20. i05162064.png ; $\frac { \partial } { \partial z } = \frac { 1 } { 2 } ( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } )$ ; confidence 0.997

21. i12004046.png ; $\partial D \times D$ ; confidence 0.998

22. i11008014.png ; $g \in E$ ; confidence 0.988

23. i11008077.png ; $T f _ { n } \rightarrow 0$ ; confidence 0.976

24. i05177061.png ; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981

25. i05187033.png ; $T _ { W } ^ { 2 k + 1 } ( X )$ ; confidence 0.984

26. i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842

27. i051930181.png ; $Y = C$ ; confidence 0.871

28. i051930154.png ; $\{ f _ { \alpha } : \alpha \in \mathfrak { A } \}$ ; confidence 0.968

29. i05194058.png ; $m \times ( n + 1 )$ ; confidence 1.000

30. i05195031.png ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069

31. i051950193.png ; $\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$ ; confidence 0.981

32. i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462

33. i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491

34. i05202038.png ; $B = Y \backslash 0$ ; confidence 0.999

35. i12006014.png ; $x < \varrho y$ ; confidence 0.723

36. i05211013.png ; $T \subset R ^ { 1 }$ ; confidence 0.989

37. i05213037.png ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288

38. i0521507.png ; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397

39. i0522303.png ; $x \leq z \leq y$ ; confidence 0.995

40. i05226072.png ; $Z \in G$ ; confidence 0.401

41. i05237019.png ; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766

42. i13005074.png ; $| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 }$ ; confidence 0.554

43. i13005080.png ; $s > - \infty$ ; confidence 0.985

44. i130060185.png ; $< 2 a$ ; confidence 0.500

45. i13006049.png ; $y \geq x \geq 0$ ; confidence 0.999

46. i13007010.png ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953

47. i05241032.png ; $y = Arc$ ; confidence 0.482

48. i05241017.png ; $\operatorname { cos } ^ { - 1 } x$ ; confidence 1.000

49. i0524507.png ; $F [ \phi ( w ) ]$ ; confidence 0.983

50. i0524504.png ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455

51. i05250047.png ; $P ^ { N } ( k )$ ; confidence 0.999

52. i05250054.png ; $L ^ { \prime }$ ; confidence 0.256

53. i05250023.png ; $O _ { X } ( 1 ) = O ( 1 )$ ; confidence 0.996

54. i05252091.png ; $f ( x ^ { * } x ) \leq f ( 1 ) r ( x ^ { * } x )$ ; confidence 0.984

55. i05255041.png ; $\omega ^ { \beta }$ ; confidence 0.626

56. i05266017.png ; $0 \in R ^ { 3 }$ ; confidence 0.983

57. i12008061.png ; $H = 0$ ; confidence 0.999

58. i12008047.png ; $m s$ ; confidence 0.683

59. i120080116.png ; $\gamma = 7 / 4$ ; confidence 0.659

60. i05273034.png ; $p : G \rightarrow G$ ; confidence 0.995

61. i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831

62. i05280027.png ; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775

63. i052800127.png ; $E ^ { 2 k + 1 }$ ; confidence 0.996

64. i052860119.png ; $( = 2 / \pi )$ ; confidence 0.994

65. i05294039.png ; $F _ { t } : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.989

66. i05294012.png ; $Y \times t$ ; confidence 0.546

67. i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252

68. i05302031.png ; $\kappa _ { k } = a _ { n n } ^ { ( k ) }$ ; confidence 0.556

69. i05302096.png ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371

70. i05304033.png ; $F _ { 0 }$ ; confidence 0.994

71. i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434

72. i130090151.png ; $p < 12000000$ ; confidence 1.000

73. i130090126.png ; $\lambda _ { p } ( K / k ) = \lambda ( X )$ ; confidence 0.997

74. i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875

75. i130090155.png ; $\overline { Q } _ { p }$ ; confidence 0.689

76. i13009026.png ; $\mu _ { m }$ ; confidence 0.969

77. j05405048.png ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312

78. j054050109.png ; $dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$ ; confidence 0.565

79. j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234

80. j054050155.png ; $e _ { 1 } = ( 2 - k ^ { 2 } ) / 3$ ; confidence 0.995

81. j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836

82. j05407010.png ; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916

83. j05409038.png ; $x = B x + g$ ; confidence 0.998

84. j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843

85. j05420048.png ; $f _ { 0 } ( \Delta )$ ; confidence 0.998

86. j05420029.png ; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051

87. j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753

88. j120020240.png ; $B M O$ ; confidence 0.973

89. j05425028.png ; $K ^ { * }$ ; confidence 0.718

90. j13004062.png ; $\operatorname { cr } ( K )$ ; confidence 0.995

91. j13004079.png ; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952

92. j130040145.png ; $M ^ { ( 2 ) }$ ; confidence 0.998

93. j13004075.png ; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$ ; confidence 0.972

94. j0543403.png ; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072

95. j13007031.png ; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923

96. j13007082.png ; $\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$ ; confidence 0.994

97. k055030100.png ; $t = [ \xi _ { E } ]$ ; confidence 0.983

98. k05503063.png ; $T ( X )$ ; confidence 0.996

99. k05504059.png ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$ ; confidence 0.998

100. k05510011.png ; $h = K \eta \leq 1 / 2$ ; confidence 0.997

101. k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320

102. k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497

103. k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230

104. k13001019.png ; $T ( s )$ ; confidence 1.000

105. k12004019.png ; $\overline { 9 } _ { 42 }$ ; confidence 0.683

106. k12006031.png ; $h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$ ; confidence 0.989

107. k1200504.png ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961

108. k12005074.png ; $m \geq m _ { 0 }$ ; confidence 0.997

109. k05518015.png ; $z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$ ; confidence 0.967

110. k11007019.png ; $- w _ { 0 } ( \chi )$ ; confidence 0.944

111. k1100801.png ; $W _ { C }$ ; confidence 0.473

112. k12008015.png ; $K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$ ; confidence 0.995

113. k0553405.png ; $K _ { \mu }$ ; confidence 0.997

114. k05535065.png ; $K _ { 0 } ^ { 4 k + 2 }$ ; confidence 0.990

115. k05544031.png ; $\Delta u = - f ( x )$ ; confidence 0.986

116. k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837

117. k05548037.png ; $R \phi / 6$ ; confidence 0.994

118. k0554806.png ; $\mu = m c / \hbar$ ; confidence 0.999

119. k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862

120. k05548012.png ; $\partial / \partial x ^ { \alpha } \rightarrow ( \partial / \partial x ^ { \alpha } ) - i e A _ { \alpha } / \hbar$ ; confidence 0.973

121. k05552076.png ; $\Omega ( \Gamma )$ ; confidence 1.000

122. k05552082.png ; $\Gamma 20$ ; confidence 0.310

123. k05552062.png ; $D _ { 1 } / \Gamma$ ; confidence 0.999

124. k055520124.png ; $\frac { 1 } { 2 \pi } \{ \text { hyperbolic area of } \Omega \backslash \Gamma \} \leq 2 ( N - 1 )$ ; confidence 0.926

125. k055580126.png ; $\hat { M } _ { 0 }$ ; confidence 0.537

126. k055610105.png ; $Q _ { 1 } : A \rightarrow T ^ { \prime } A T$ ; confidence 0.990

127. k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246

128. k0556604.png ; $f ( z ) = z + \ldots$ ; confidence 0.768

129. k0557001.png ; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702

130. k05570014.png ; $I _ { \Gamma } ( x )$ ; confidence 0.999

131. k05570017.png ; $A _ { t } ^ { * }$ ; confidence 0.985

132. k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890

133. k11013020.png ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480

134. k05580079.png ; $( \partial ^ { 2 } / \partial x \partial t ) u = \operatorname { sin } u$ ; confidence 0.562

135. k0558203.png ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950

136. k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947

137. k055840256.png ; $c ( A ) \subset R \cup \{ \infty \}$ ; confidence 0.588

138. k055840354.png ; $C = C ^ { * }$ ; confidence 0.990

139. k05585032.png ; $W _ { \alpha } ( P ) \subseteq ( D _ { \alpha } ) ^ { n }$ ; confidence 0.991

140. k055850103.png ; $D _ { \alpha }$ ; confidence 0.374

141. k05585059.png ; $W _ { \alpha } ( B \supset C ) = T \leftrightarrows$ ; confidence 0.637

142. k05591019.png ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479

143. k05594036.png ; $\eta ( \epsilon ) \rightarrow 0$ ; confidence 0.993

144. k05594016.png ; $\frac { d \xi } { d t } = \epsilon X _ { 0 } ( \xi ) + \epsilon ^ { 2 } P _ { 2 } ( \xi ) + \ldots + \epsilon ^ { m } P _ { m } ( \xi )$ ; confidence 0.966

145. k05594047.png ; $\xi = \xi _ { 0 } ( \phi )$ ; confidence 0.999

146. k11019034.png ; $\mu _ { n } ( P \| Q ) =$ ; confidence 0.972

147. k11019069.png ; $P = Q$ ; confidence 0.998

148. k12003033.png ; $E \neq \emptyset$ ; confidence 0.475

149. k12003040.png ; $E = \emptyset$ ; confidence 0.977

150. k12003036.png ; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933

151. k05507045.png ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694

152. k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245

153. k056010135.png ; $p : X \rightarrow S$ ; confidence 0.998

154. k056010160.png ; $R ^ { k } p \times ( F )$ ; confidence 0.519

155. l11002085.png ; $x \preceq y$ ; confidence 0.956

156. l11003082.png ; $M ( E ) = \vec { X }$ ; confidence 0.493

157. l057050123.png ; $c \rightarrow N$ ; confidence 0.335

158. l057050113.png ; $\overline { B } \rightarrow \overline { B }$ ; confidence 0.985

159. l057050165.png ; $a \rightarrow a b d ^ { 6 }$ ; confidence 0.569

160. l11016049.png ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921

161. l0571105.png ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817

162. l0571208.png ; $1 \leq p < + \infty$ ; confidence 0.999

163. l05715028.png ; $3 N + k + m$ ; confidence 0.919

164. l05715026.png ; $\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$ ; confidence 0.944

165. l05715031.png ; $\mu$ ; confidence 0.335

166. l05718018.png ; $x g$ ; confidence 0.734

167. l0572001.png ; $T + V = h$ ; confidence 0.994

168. l11005048.png ; $v ( P ) - v ( D )$ ; confidence 0.999

169. l1100603.png ; $x ^ { ( 0 ) } = 1$ ; confidence 0.976

170. l05700011.png ; $M N$ ; confidence 0.867

171. l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262

172. l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998

173. l05700094.png ; $\equiv \lambda x y \cdot x$ ; confidence 0.709

174. l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756

175. l05743029.png ; $k ^ { 2 } ( \tau ) = \lambda$ ; confidence 0.999

176. l05744010.png ; $D = 2 \gamma k T / M$ ; confidence 0.990

177. l12003069.png ; $T _ { F }$ ; confidence 0.455

178. l12003046.png ; $T _ { E } : U \rightarrow U$ ; confidence 0.704

179. l05745021.png ; $v \in C ( \overline { G } )$ ; confidence 0.795

180. l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331

181. l05754082.png ; $| t | ^ { - 1 }$ ; confidence 1.000

182. l05756010.png ; $E = \frac { m } { 2 } ( \dot { x } \square _ { 1 } ^ { 2 } + \dot { x } \square _ { 2 } ^ { 2 } + \dot { x } \square _ { 3 } ^ { 2 } ) + \frac { \kappa } { r }$ ; confidence 0.586

183. l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155

184. l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883

185. l05761040.png ; $U _ { 0 } = 1$ ; confidence 0.997

186. l0576408.png ; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738

187. l05772024.png ; $E ( \mu _ { n } / n )$ ; confidence 0.725

188. l05774010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299

189. l057780212.png ; $31$ ; confidence 0.915

190. l057780113.png ; $\mu \approx 18.431$ ; confidence 0.997

191. l05778086.png ; $4.60$ ; confidence 0.967

192. l057780230.png ; $E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$ ; confidence 0.681

193. l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461

194. l12005018.png ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.580

195. l05787021.png ; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776

196. l12006098.png ; $H \phi$ ; confidence 0.878

197. l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248

198. l12006027.png ; $\phi \in H$ ; confidence 0.981

199. l0580808.png ; $B \subset X ^ { * }$ ; confidence 0.699

200. l05814017.png ; $v = v ( t )$ ; confidence 0.987

201. l0581405.png ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961

202. l05817023.png ; $\{ i _ { k } \}$ ; confidence 0.773

203. l05821011.png ; $\zeta = 0$ ; confidence 0.999

204. l05821012.png ; $- \operatorname { log } | \zeta |$ ; confidence 0.998

205. l05821045.png ; $0 < r < \operatorname { tanh } \pi / 4$ ; confidence 0.998

206. l0582408.png ; $\operatorname { grad } \phi ( \zeta ) \neq 0$ ; confidence 0.967

207. l05836041.png ; $x \# y = x y + y x - \frac { 2 } { n + 1 } ( \operatorname { Tr } x y ) l$ ; confidence 0.625

208. l05836011.png ; $( x y ) x = y ( y x )$ ; confidence 1.000

209. l058360172.png ; $\mathfrak { A } ^ { - }$ ; confidence 0.906

210. l05836089.png ; $S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$ ; confidence 0.980

211. l058360168.png ; $x$ ; confidence 0.899

212. l058360142.png ; $P _ { 8 }$ ; confidence 0.799

213. l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215

214. l05847082.png ; $\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$ ; confidence 0.634

215. l058510198.png ; $0 \leq p \leq n / 2$ ; confidence 0.998

216. l058510173.png ; $A _ { I l }$ ; confidence 0.608

217. l05848075.png ; $L ( H )$ ; confidence 0.995

218. l12009013.png ; $Q _ { A }$ ; confidence 0.136

219. l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872

220. l05859076.png ; $x ( 1 )$ ; confidence 1.000

221. l05861031.png ; $Z \times T$ ; confidence 0.994

222. l05861083.png ; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708

223. l05866027.png ; $G \subset N ( F )$ ; confidence 0.979

224. l05868041.png ; $\pi _ { 1 } ( G ) \cong \Gamma ( G ) / \Gamma _ { 0 }$ ; confidence 0.992

225. l05872090.png ; $l _ { k } ( A )$ ; confidence 0.348

226. l11014038.png ; $\epsilon$ ; confidence 0.882

227. l11014014.png ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405

228. l05877073.png ; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711

229. l120100122.png ; $R ^ { n } \times R ^ { n }$ ; confidence 0.554

230. l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191

231. l12010023.png ; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680

232. l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857

233. l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845

234. l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875

235. l05883068.png ; $- \Delta u + c u$ ; confidence 0.993

236. l05892067.png ; $Z y \rightarrow \infty$ ; confidence 0.270

237. l05902046.png ; $y = \operatorname { sin } ( 1 / x )$ ; confidence 1.000

238. l059110158.png ; $f _ { h } \in F _ { k }$ ; confidence 0.549

239. l05911037.png ; $p i n$ ; confidence 0.132

240. l05911071.png ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263

241. l059110155.png ; $L _ { h } u _ { k } = f _ { k }$ ; confidence 0.508

242. l05911046.png ; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712

243. l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851

244. l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363

245. l05914024.png ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$ ; confidence 0.681

246. l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821

247. l05916065.png ; $A ^ { ( 0 ) }$ ; confidence 0.506

248. l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195

249. l05916072.png ; $\operatorname { ln } t$ ; confidence 0.999

250. l059160335.png ; $T _ { \Delta }$ ; confidence 0.636

251. l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474

252. l05917055.png ; $\Gamma _ { 0 } ( . )$ ; confidence 0.995

253. l059170161.png ; $H ^ { k }$ ; confidence 0.998

254. l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837

255. l059340144.png ; $C _ { 0 } ( R )$ ; confidence 0.976

256. l059340213.png ; $A -$ ; confidence 0.967

257. l05935016.png ; $x ( t ) \equiv 0$ ; confidence 0.999

258. l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867

259. l059350101.png ; $X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$ ; confidence 0.977

260. l05935092.png ; $Y ( t ) = X ( t ) C$ ; confidence 0.998

261. l05935079.png ; $W ( t ) \neq 0$ ; confidence 0.995

262. l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473

263. l059350126.png ; $\dot { y } = - A ^ { T } ( t ) y$ ; confidence 0.993

264. l05941048.png ; $Q _ { 3 } ( b )$ ; confidence 0.962

265. l05949079.png ; $x = F ( t ) y$ ; confidence 0.992

266. l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828

267. l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892

268. l059490155.png ; $| \epsilon | < \epsilon$ ; confidence 0.461

269. l059490127.png ; $\frac { d z } { d t } = - A ( t ) ^ { * } Z$ ; confidence 0.495

270. l0595404.png ; $L ( 0 ) = 0$ ; confidence 1.000

271. l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716

272. l05971012.png ; $f \in H _ { p } ^ { \alpha }$ ; confidence 0.996

273. l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801

274. l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851

275. l12012087.png ; $Z _ { \text { tot } S } = Z$ ; confidence 0.066

276. l060090100.png ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399

277. l06016034.png ; $\alpha = E X _ { 1 }$ ; confidence 0.670

278. l06019071.png ; $d ( A )$ ; confidence 0.998

279. l0602207.png ; $\in \Theta$ ; confidence 0.953

280. l06025052.png ; $m = n = 1$ ; confidence 0.998

281. l06029012.png ; $\left. \begin{array} { c c c } { R } & { \stackrel { \pi _ { 2 } \mu } { \rightarrow } } & { B } \\ { \pi _ { 1 } \mu \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { \alpha } } & { C } \end{array} \right.$ ; confidence 0.590

282. l06031040.png ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342

283. l0605309.png ; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912

284. l12015025.png ; $w \in T V$ ; confidence 0.524

285. l06060022.png ; $\int \frac { d x } { x } = \operatorname { ln } | x | + C$ ; confidence 0.986

286. l06060030.png ; $\pi < \operatorname { arg } z \leq \pi$ ; confidence 0.972

287. l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129

288. l110170115.png ; $Q \alpha = Q \beta \gamma$ ; confidence 0.989

289. l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875

290. l06082028.png ; $\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$ ; confidence 0.659

291. l06083045.png ; $b \in Q$ ; confidence 0.934

292. l06083024.png ; $Q _ { i - 1 } / Q _ { i }$ ; confidence 0.640

293. l12016033.png ; $( S ^ { 1 } )$ ; confidence 0.472

294. l1201604.png ; $z = e ^ { i \theta }$ ; confidence 0.999

295. l0609706.png ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905

296. l0610509.png ; $f ^ { \prime } ( x ) = 0$ ; confidence 1.000

297. l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148

298. l12019039.png ; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953

299. l12019010.png ; $\lambda _ { j } + \overline { \lambda } _ { k } = 0$ ; confidence 0.991

300. l06116099.png ; $V _ { 0 } \subset E$ ; confidence 0.979

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/7. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/7&oldid=43825