Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/5

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 11:40, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 5 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

List

1. d03087032.png ; $$\pi ( \chi )$$ ; confidence 0.978

2. d03087020.png ; $$C ^ { \infty } ( G )$$ ; confidence 0.980

3. d11011084.png ; $$L \cup O$$ ; confidence 0.130

4. d11011051.png ; $$M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$$ ; confidence 0.307

5. d13005022.png ; $$m - 2 r$$ ; confidence 1.000

6. d130060103.png ; $$Z \in X$$ ; confidence 0.820

7. d13006091.png ; $$m _ { B } ( A ) = 0$$ ; confidence 0.968

8. d13006089.png ; $$m B$$ ; confidence 0.535

9. d03101088.png ; $$S ^ { 4 k - 1 }$$ ; confidence 0.950

10. d13008069.png ; $$H = C ^ { n }$$ ; confidence 0.847

11. d130080108.png ; $$F \in Hol ( D )$$ ; confidence 0.805

12. d0311001.png ; $$\zeta ( s ) = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } }$$ ; confidence 0.995

13. d03125086.png ; $$\Omega _ { X / Y } ^ { 1 }$$ ; confidence 0.919

14. d03125044.png ; $$\phi : A \rightarrow A$$ ; confidence 0.991

15. d03128063.png ; $$s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$$ ; confidence 0.953

16. d031280173.png ; $$R ^ { i } F = H ^ { i } \circ R ^ { * } F$$ ; confidence 0.941

17. d03128077.png ; $$f t = g t$$ ; confidence 0.997

18. d031280129.png ; $$f : X ^ { \cdot } \rightarrow Y$$ ; confidence 0.209

19. d031380303.png ; $$\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$$ ; confidence 0.232

20. d031380332.png ; $$E = N$$ ; confidence 0.995

21. d031380384.png ; $$\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$$ ; confidence 0.290

22. d031380296.png ; $$\sum _ { \sim } D _ { n + 1 } ^ { 0 }$$ ; confidence 0.204

23. d0314205.png ; $$k [ ( T _ { i j } ) _ { 1 \leq i \leq d } ]$$ ; confidence 0.679

24. d0314706.png ; $$| \hat { b } _ { n } | = 1$$ ; confidence 0.209

25. d03154015.png ; $$G r$$ ; confidence 0.809

26. d13009046.png ; $$1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$$ ; confidence 0.512

27. d13009024.png ; $$1 \leq u \leq 2$$ ; confidence 0.976

28. d13009051.png ; $$u > 1$$ ; confidence 0.987

29. d03168056.png ; $$q _ { 2 } \neq q _ { 1 }$$ ; confidence 0.828

30. d0316809.png ; $$\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$$ ; confidence 0.786

31. d03173088.png ; $$| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$$ ; confidence 0.210

32. d03175051.png ; $$Z _ { h }$$ ; confidence 0.217

33. d03175013.png ; $$\overline { G } = G + \Gamma$$ ; confidence 0.752

34. d03177042.png ; $$t = t _ { 0 } = x _ { 0 } ( 0 )$$ ; confidence 0.983

35. d031830278.png ; $$u \leq \theta u$$ ; confidence 0.794

36. d031830344.png ; $$\operatorname { rank } ( A _ { i } ) = \operatorname { rank } ( B _ { i } )$$ ; confidence 0.983

37. d031830290.png ; $$A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$$ ; confidence 0.523

38. d031830239.png ; $$G ( G / F _ { 1 } ) = G _ { 1 }$$ ; confidence 0.998

39. d031830269.png ; $$\operatorname { ord } ( \theta ) = \sum e$$ ; confidence 0.833

40. d031830152.png ; $$G \neq 0$$ ; confidence 0.999

41. d031830116.png ; $$\{ A \}$$ ; confidence 0.999

42. d031830267.png ; $$\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$$ ; confidence 0.142

43. d03185095.png ; $$x \neq \pm 1$$ ; confidence 0.956

44. d03185088.png ; $$( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$$ ; confidence 1.000

45. d031850109.png ; $$( \frac { u } { v } ) ^ { \prime } = \frac { u ^ { \prime } v - u v ^ { \prime } } { v ^ { 2 } }$$ ; confidence 0.958

46. d03185094.png ; $$( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$$ ; confidence 0.996

47. d03189028.png ; $$\Delta \rightarrow 0$$ ; confidence 0.981

48. d03191048.png ; $$x _ { 2 } ( t )$$ ; confidence 0.998

49. d0319107.png ; $$\dot { x } = f ( t )$$ ; confidence 0.623

50. d03191051.png ; $$x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$$ ; confidence 0.998

51. d03192079.png ; $$0 < l < n$$ ; confidence 0.998

52. d031930232.png ; $$= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$$ ; confidence 0.918

53. d03195029.png ; $$W _ { 2 } ^ { p }$$ ; confidence 0.986

54. d03195033.png ; $$L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$$ ; confidence 0.840

55. d031990131.png ; $$R _ { L } = H ( V )$$ ; confidence 0.569

56. d03201064.png ; $$( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$$ ; confidence 0.980

57. d03201093.png ; $$n - m$$ ; confidence 0.998

58. d03201062.png ; $$\partial x / u = \partial t / 1$$ ; confidence 0.967

59. d03206019.png ; $$\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$$ ; confidence 0.933

60. d03206068.png ; $$| x ( t ( t ) ) \| \leq \rho$$ ; confidence 0.117

61. d032100109.png ; $$\dot { x } ( t ) = A x ( t - h ) - D x ( t )$$ ; confidence 0.986

62. d03207031.png ; $$2 \pi \alpha$$ ; confidence 0.461

63. d03211024.png ; $$z = \phi _ { i }$$ ; confidence 0.976

64. d032130352.png ; $$s ^ { \prime } ( \Omega ^ { r } ( X ) )$$ ; confidence 0.911

65. d032130227.png ; $$\int _ { S } \omega$$ ; confidence 0.561

66. d032130311.png ; $$\omega \in \Omega ^ { d } [ X ]$$ ; confidence 0.948

67. d032150132.png ; $$\hat { V }$$ ; confidence 0.359

68. d03224071.png ; $$d \omega = d \square ^ { * } \omega = 0$$ ; confidence 0.954

69. d03225022.png ; $$\partial M$$ ; confidence 0.831

70. d03232015.png ; $$u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$$ ; confidence 0.362

71. d03232034.png ; $$u ( x _ { i } )$$ ; confidence 0.997

72. d03233032.png ; $$r \in F$$ ; confidence 0.671

73. d03233040.png ; $$b _ { 0 }$$ ; confidence 0.363

74. d03233041.png ; $$r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$$ ; confidence 0.388

75. d03236035.png ; $$\frac { \partial u } { \partial t } + u \frac { \partial u } { \partial x } = D \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } }$$ ; confidence 0.994

76. d032450444.png ; $$X _ { 1 } \cup X _ { 2 } = X$$ ; confidence 0.917

77. d032450146.png ; $$\operatorname { dim } X \times Y < \operatorname { dim } X + \operatorname { dim } Y$$ ; confidence 0.994

78. d032450371.png ; $$\{ fd ( M )$$ ; confidence 0.531

79. d032450404.png ; $$[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$$ ; confidence 0.618

80. d032450327.png ; $$< \operatorname { Gdim } L < 1 +$$ ; confidence 0.485

81. d03248013.png ; $$d ( I ^ { n } ) = n$$ ; confidence 0.754

82. d03249024.png ; $$s \in Z$$ ; confidence 0.983

83. d03249026.png ; $$G$$ ; confidence 0.797

84. d032600176.png ; $$w _ { N } ( \alpha ) \geq n$$ ; confidence 0.879

85. d03261012.png ; $$y = y _ { 0 } - a n$$ ; confidence 0.836

86. d0326107.png ; $$a x + b y = 1$$ ; confidence 0.602

87. d1301309.png ; $$z = r \operatorname { cos } \theta$$ ; confidence 0.866

88. d032890165.png ; $$\operatorname { li } x / \phi ( d )$$ ; confidence 0.594

89. d03289066.png ; $$s = - 2 \nu - \delta$$ ; confidence 0.945

90. d1201904.png ; $$C _ { 0 } ^ { \infty } ( \Omega ) \subset L _ { 2 } ( \Omega )$$ ; confidence 0.992

91. d12018028.png ; $$H ^ { p } ( d \theta / 2 \pi )$$ ; confidence 0.994

92. d12018084.png ; $$C ( G )$$ ; confidence 1.000

93. d13017013.png ; $$0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq$$ ; confidence 0.992

94. d03292042.png ; $$\sigma > h$$ ; confidence 0.998

95. d03292035.png ; $$s = 0$$ ; confidence 0.992

96. d11022035.png ; $$L y = g$$ ; confidence 0.990

97. d11023041.png ; $$K = \overline { K } \cap L _ { m } ( G )$$ ; confidence 0.866

98. d03311036.png ; $$| \{ Z \} _ { n } | \rightarrow \infty$$ ; confidence 0.988

99. d03316011.png ; $$\sigma _ { i } ^ { z }$$ ; confidence 0.702

100. d03318044.png ; $$e ( B / A ) f ( B / A ) = n$$ ; confidence 0.996

101. d03318055.png ; $$f ( B / A ) = 1$$ ; confidence 0.999

102. d03319041.png ; $$t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$$ ; confidence 0.248

103. d03321058.png ; $$R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$$ ; confidence 0.981

104. d03328018.png ; $$x d y$$ ; confidence 0.999

105. d033340103.png ; $$\gamma$$ ; confidence 0.589

106. d03334050.png ; $$c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$$ ; confidence 0.068

107. d033340195.png ; $$\lambda _ { 3 } = K \sum _ { i j } \frac { \delta _ { i j } ^ { 2 } } { \sigma ^ { 2 } }$$ ; confidence 0.991

108. d12023063.png ; $$R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$$ ; confidence 0.906

109. d120230125.png ; $$T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$$ ; confidence 0.997

110. d12023076.png ; $$Z ^ { * }$$ ; confidence 0.508

111. d12023093.png ; $$| f _ { i } | < 1$$ ; confidence 0.997

112. d12023095.png ; $$R - F R F ^ { * } = G J G ^ { * }$$ ; confidence 0.996

113. d03342015.png ; $$\sigma _ { k }$$ ; confidence 0.198

114. d03343022.png ; $$x \in D _ { B }$$ ; confidence 0.620

115. d03346020.png ; $$| w - \beta _ { 0 } | = | \zeta _ { 0 } |$$ ; confidence 0.997

116. d033460124.png ; $$| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$$ ; confidence 0.854

117. d03346022.png ; $$\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$$ ; confidence 0.488

118. d033530372.png ; $$d _ { n } \ll p _ { n } ^ { \theta }$$ ; confidence 0.957

119. d03353095.png ; $$\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$$ ; confidence 0.429

120. d03353048.png ; $$\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$$ ; confidence 0.899

121. d033530133.png ; $$\zeta ( \sigma + i t ) \neq 0$$ ; confidence 0.991

122. d0335708.png ; $$\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$$ ; confidence 0.170

123. d0335707.png ; $$\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$$ ; confidence 0.076

124. d0335705.png ; $$\alpha \sum _ { i \in I } b _ { i } = \sum _ { i \in I } a b _ { i }$$ ; confidence 0.661

125. d13018035.png ; $$\| \hat { f } \| = \| f \| _ { 1 }$$ ; confidence 0.870

126. d13018075.png ; $$A ( \vec { G } )$$ ; confidence 0.484

127. d13018088.png ; $$\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$$ ; confidence 0.784

128. d03363020.png ; $$\operatorname { lim } _ { x \rightarrow \infty } e ^ { - x } \sum _ { n = 0 } ^ { \infty } \frac { s _ { n } x ^ { n } } { n ! }$$ ; confidence 0.659

129. d03368022.png ; $$[ A : F ] = [ L : F ] ^ { 2 }$$ ; confidence 0.997

130. d03372075.png ; $$\sigma > 1 / 2$$ ; confidence 0.999

131. d03372050.png ; $$\gamma _ { k } < \sigma < 1$$ ; confidence 0.998

132. d03379044.png ; $$\Delta _ { D } ( z )$$ ; confidence 0.999

133. d03379012.png ; $$D \backslash K$$ ; confidence 0.979

134. d0338502.png ; $$x \square ^ { j }$$ ; confidence 0.818

135. d0339309.png ; $$p _ { 1 } / p _ { 2 }$$ ; confidence 0.981

136. d03399055.png ; $$y ^ { \prime } ( b ) + v ( b ) y ( b ) = \gamma ( b )$$ ; confidence 0.998

137. d03399034.png ; $$y ^ { \prime } ( b ) + \psi y ( b ) = \beta$$ ; confidence 0.993

138. d03398025.png ; $$\sum _ { m = 1 } ^ { \infty } u _ { m n n }$$ ; confidence 0.852

139. d034120342.png ; $$O \subset A _ { R }$$ ; confidence 0.132

140. d034120272.png ; $$A _ { 0 } ( G )$$ ; confidence 0.996

141. d034120271.png ; $$\infty \in G$$ ; confidence 0.992

142. d120280147.png ; $$\overline { U }$$ ; confidence 0.299

143. d120280152.png ; $$A ( D ) ^ { * } \simeq A / B$$ ; confidence 0.981

144. d12029018.png ; $$f ( q ) = 1 / ( \sqrt { 5 } q ^ { 2 } )$$ ; confidence 1.000

145. d1203009.png ; $$Y ( t ) \in R ^ { m }$$ ; confidence 0.934

146. d1203201.png ; $$T : L ^ { 1 } \rightarrow X$$ ; confidence 0.986

147. d03426025.png ; $$\delta ( t )$$ ; confidence 1.000

148. d03428088.png ; $$S _ { g } ( w _ { 0 } )$$ ; confidence 0.921

149. e1200103.png ; $$A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$$ ; confidence 0.193

150. e12012065.png ; $$\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$$ ; confidence 0.904

151. e12002045.png ; $$T$$ ; confidence 0.914

152. e12002093.png ; $$\Sigma \Omega X \rightarrow X$$ ; confidence 0.748

153. e12002023.png ; $$74$$ ; confidence 0.496

154. e120020102.png ; $$V \not \equiv W$$ ; confidence 0.489

155. e13002010.png ; $$\varphi$$ ; confidence 0.858

156. e03511022.png ; $$\Sigma - 1$$ ; confidence 0.852

157. e12005039.png ; $$h ^ { i } ( w ) = g ^ { i } ( w )$$ ; confidence 0.992

158. e12006018.png ; $$T p ( A _ { y } ) = A$$ ; confidence 0.900

159. e12006038.png ; $$Y \rightarrow J ^ { 1 } Y$$ ; confidence 0.987

160. e12007012.png ; $$\Gamma _ { q }$$ ; confidence 0.846

161. e0351605.png ; $$L ( u ) + \lambda u = 0$$ ; confidence 0.993

162. e03516059.png ; $$\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$$ ; confidence 0.519

163. e03517056.png ; $$\| \hat { A } - A \| \leq \delta$$ ; confidence 0.245

164. e03517077.png ; $$\overline { U _ { n } \in N A _ { n } ( B ) }$$ ; confidence 0.452

165. e1300308.png ; $$\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$$ ; confidence 0.088

166. e13003029.png ; $$K _ { \infty }$$ ; confidence 0.984

167. e11003020.png ; $$f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$$ ; confidence 0.738

168. e035250110.png ; $$f = u _ { 1 } + i u _ { 2 }$$ ; confidence 0.994

169. e03525048.png ; $$0 < \sigma < 0.5$$ ; confidence 0.996

170. e03525091.png ; $$z _ { k } \in L$$ ; confidence 0.875

171. e035250143.png ; $$\Delta \Delta w _ { 0 } = 0$$ ; confidence 0.903

172. e12010015.png ; $$f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$$ ; confidence 0.640

173. e12010035.png ; $$f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$$ ; confidence 0.071

174. e12010055.png ; $$E ^ { \prime } = 0$$ ; confidence 0.985

175. e0353202.png ; $$\tau _ { i + 1 } - \tau _ { i }$$ ; confidence 0.970

176. e03536067.png ; $$\langle P ^ { ( 2 ) } \rangle$$ ; confidence 0.899

177. e03536090.png ; $$\operatorname { Th } ( K _ { 1 } )$$ ; confidence 0.733

178. e11006015.png ; $$\Omega _ { * } ^ { SO }$$ ; confidence 0.644

179. e03547029.png ; $$f ( z _ { 1 } + z _ { 2 } )$$ ; confidence 0.999

180. e11007046.png ; $$C x ^ { - 1 }$$ ; confidence 0.834

181. e110070191.png ; $$f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$$ ; confidence 0.893

182. e11007067.png ; $$y ^ { 2 } = R ( x )$$ ; confidence 0.993

183. e03549042.png ; $$u = - \int _ { z } ^ { \infty } \frac { d z } { w }$$ ; confidence 0.983

184. e03550031.png ; $$T ^ { * } X \backslash 0$$ ; confidence 0.997

185. e0355309.png ; $$\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$$ ; confidence 0.732

186. e035550163.png ; $$b _ { 2 } = 0$$ ; confidence 1.000

187. e035550128.png ; $$\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$$ ; confidence 0.949

188. e03555010.png ; $$X _ { t } = m F$$ ; confidence 0.993

189. e03555028.png ; $$y ^ { 2 } = x ^ { 3 } - g x - g$$ ; confidence 0.962

190. e03556014.png ; $$y ^ { \prime } ( 0 ) = 0$$ ; confidence 0.990

191. e11008028.png ; $$P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$$ ; confidence 0.394

192. e11008048.png ; $$B \circ F$$ ; confidence 0.974

193. e03566053.png ; $$c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$$ ; confidence 0.789

194. e0356605.png ; $$U _ { \mu } ( x ) = \int H ( | x - y | ) d \mu ( y )$$ ; confidence 0.999

195. e1300407.png ; $$U _ { 0 } ( t )$$ ; confidence 0.998

196. e13004044.png ; $$( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$$ ; confidence 0.766

197. e13004035.png ; $$( \Omega _ { + } - 1 ) \psi ( t ) = ( \Omega _ { + } - 1 ) g \psi ( t ) =$$ ; confidence 0.997

198. e0357202.png ; $$\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$$ ; confidence 0.823

199. e0357604.png ; $$f : W \rightarrow R$$ ; confidence 0.920

200. e03579057.png ; $$\sum _ { n } ^ { - 1 }$$ ; confidence 0.820

201. e0358008.png ; $$\nu ( n ) = \alpha$$ ; confidence 0.430

202. e03581038.png ; $$\Phi \Psi$$ ; confidence 0.943

203. e03581047.png ; $$\Psi ( A ) = A$$ ; confidence 0.999

204. e12015019.png ; $$\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$$ ; confidence 0.338

205. e12015070.png ; $$\lambda _ { 1 } = \lambda _ { 2 }$$ ; confidence 1.000

206. e12015064.png ; $$P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$$ ; confidence 0.914

207. e03607020.png ; $$\tau _ { n } ^ { ( B ) }$$ ; confidence 0.845

208. e11010022.png ; $$o ( G )$$ ; confidence 0.990

209. e03612012.png ; $$m ( M )$$ ; confidence 0.999

210. e03623076.png ; $$2 d \geq n$$ ; confidence 0.758

211. e036230210.png ; $$R ( \delta ) = 1 - H ( \delta )$$ ; confidence 1.000

212. e036230124.png ; $$k \geq n - i t$$ ; confidence 0.558

213. e03624043.png ; $$\sigma \approx s$$ ; confidence 0.994

214. e12019037.png ; $$l _ { x }$$ ; confidence 0.196

215. e03640030.png ; $$2 - 2 g - l$$ ; confidence 0.741

216. e03640033.png ; $$2 - m - 1$$ ; confidence 0.994

217. e03653023.png ; $$t h$$ ; confidence 0.989

218. e12023072.png ; $$E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$$ ; confidence 0.682

219. e12023094.png ; $$\sigma ^ { k } : M \rightarrow E ^ { k }$$ ; confidence 0.958

220. e12023045.png ; $$\therefore M \rightarrow F$$ ; confidence 0.313

221. e1202308.png ; $$M = \overline { U }$$ ; confidence 0.999

222. e120230115.png ; $$E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$$ ; confidence 0.101

223. e120230111.png ; $$E ( L )$$ ; confidence 0.960

224. e12023058.png ; $$E ( L ) = \frac { \partial L } { \partial y } - D ( \frac { \partial L } { \partial y ^ { \prime } } )$$ ; confidence 0.989

225. e12023061.png ; $$L \mapsto E ( L )$$ ; confidence 0.892

226. e12024025.png ; $$K ( L )$$ ; confidence 0.907

227. e03662025.png ; $$Q _ { n - j } ( z ) \equiv 0$$ ; confidence 0.981

228. e11013060.png ; $$p _ { x } ^ { * } = \lambda \operatorname { exp } ( - \lambda x )$$ ; confidence 0.974

229. e03677085.png ; $$A + 2$$ ; confidence 0.997

230. e03677073.png ; $$B = f ( A )$$ ; confidence 0.999

231. e03677067.png ; $$\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$$ ; confidence 0.866

232. e03677058.png ; $$P ^ { \prime } ( C )$$ ; confidence 0.802

233. e03677051.png ; $$f | _ { A } = \phi$$ ; confidence 0.668

234. e03682019.png ; $$B _ { \mu } ^ { 1 } \subset B \subset B _ { \mu } ^ { 2 }$$ ; confidence 0.646

235. e03682038.png ; $$\tau \geq \zeta$$ ; confidence 0.994

236. e03684025.png ; $$A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$$ ; confidence 0.919

237. e03684018.png ; $$K ( B - C _ { N } ) > K ( B - A ) > D$$ ; confidence 0.579

238. e03684024.png ; $$C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$$ ; confidence 0.974

239. e03685016.png ; $$\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$$ ; confidence 0.606

240. e12026092.png ; $$( L _ { \mu } ) ^ { p }$$ ; confidence 0.998

241. e03691052.png ; $$z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$$ ; confidence 0.857

242. e03691064.png ; $$( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$$ ; confidence 0.053

243. e03691017.png ; $$a ^ { X } = e ^ { X \operatorname { ln } \alpha }$$ ; confidence 0.301

244. e13006023.png ; $$z \in Z$$ ; confidence 0.973

245. e1300704.png ; $$S = o ( \# A )$$ ; confidence 0.908

246. e03694044.png ; $$p f$$ ; confidence 0.602

247. e03696065.png ; $$y _ { j } \delta \theta$$ ; confidence 0.866

248. e036960205.png ; $$\nu - 1 / 2 \in Z$$ ; confidence 0.954

249. e036960198.png ; $$y ^ { \prime } + \alpha _ { 1 } y = 0$$ ; confidence 0.639

250. e03698026.png ; $$\alpha : G \rightarrow \operatorname { Aut } A$$ ; confidence 0.856

251. e03704050.png ; $$n + = n - = n$$ ; confidence 0.228

252. e037040161.png ; $$A = A _ { 0 } ^ { * }$$ ; confidence 0.706

253. e03704077.png ; $$\lambda < \alpha$$ ; confidence 0.600

254. e03708021.png ; $$r > n$$ ; confidence 0.953

255. e03708073.png ; $$x _ { i } ^ { 2 } = 0$$ ; confidence 0.840

256. e03716049.png ; $$\Delta J =$$ ; confidence 0.998

257. e03717072.png ; $$r < | z | < 1$$ ; confidence 0.987

258. e037200118.png ; $$\gamma \geq 0$$ ; confidence 0.994

259. f1200101.png ; $$S h$$ ; confidence 0.739

260. f03806015.png ; $$V$$ ; confidence 0.996

261. f13001030.png ; $$R _ { i } = F _ { q } [ x ] / ( f _ { i } )$$ ; confidence 0.671

262. f0381302.png ; $$G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$$ ; confidence 0.998

263. f0382203.png ; $$K _ { X } ^ { - 1 }$$ ; confidence 0.918

264. f03822036.png ; $$Q \subset P ^ { 4 }$$ ; confidence 0.991

265. f13004017.png ; $$d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$$ ; confidence 0.976

266. f11005019.png ; $$q ( 0 ) \neq 0$$ ; confidence 0.997

267. f11005048.png ; $$w ( x ) = | f ( x ) | ^ { 2 }$$ ; confidence 1.000

268. f03838022.png ; $$C _ { 0 }$$ ; confidence 0.800

269. f1200408.png ; $$( + \infty ) - ( + \infty ) = - \infty - ( - \infty ) = - \infty$$ ; confidence 0.999

270. f038390152.png ; $$\alpha ^ { \lambda } = 1$$ ; confidence 0.972

271. f038390108.png ; $$q ( m ) = ( m ^ { p - 1 } - 1 ) / p$$ ; confidence 0.963

272. f03847048.png ; $$\tau _ { 0 } = 0$$ ; confidence 0.955

273. f03847049.png ; $$\tau _ { k + 1 } = t$$ ; confidence 0.410

274. f13009060.png ; $$P ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } )$$ ; confidence 0.620

275. f1300908.png ; $$U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$$ ; confidence 0.947

276. f04008051.png ; $$P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$$ ; confidence 0.505

277. f04008010.png ; $$F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$$ ; confidence 0.940

278. f130100140.png ; $$G = T$$ ; confidence 0.991

279. f130100152.png ; $$v \in A _ { p } ( G )$$ ; confidence 0.412

280. f13010016.png ; $$u \in C ^ { G }$$ ; confidence 0.438

281. f13010077.png ; $$\lambda ^ { p } ( M ^ { 1 } ( G ) )$$ ; confidence 0.996

282. f04019037.png ; $$V ( x _ { 0 } )$$ ; confidence 0.998

283. f04021064.png ; $$\phi ( \mathfrak { A } )$$ ; confidence 0.445

284. f040230100.png ; $$x _ { n } = n$$ ; confidence 0.849

285. f040230157.png ; $$\Delta ^ { n } f ( x )$$ ; confidence 0.976

286. f040230147.png ; $$\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$$ ; confidence 0.269

287. f04033018.png ; $$f ^ { - 1 } ( f ( x ) ) \cap U$$ ; confidence 0.998

288. f04029031.png ; $$G / G 1$$ ; confidence 0.622

289. f04039064.png ; $$y ^ { i } C _ { i j k } = 0$$ ; confidence 0.942

290. f04042034.png ; $$\Phi ( \Phi ( x ) ) = x$$ ; confidence 1.000

291. f04052043.png ; $$| x - x _ { 0 } | \leq b$$ ; confidence 0.990

292. f04058030.png ; $$| X$$ ; confidence 0.687

293. f04058044.png ; $$\phi ( p )$$ ; confidence 0.999

294. f04058066.png ; $$| A | = \int _ { R } | \alpha | 0$$ ; confidence 0.765

295. f04058050.png ; $$\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$$ ; confidence 0.891

296. f04061036.png ; $$C ^ { b r } ( E ^ { n } )$$ ; confidence 0.943

297. f04069050.png ; $$\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$$ ; confidence 0.995

298. f04069087.png ; $$\{ \xi _ { f } : f \in H \}$$ ; confidence 0.998

299. f04069072.png ; $$\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$$ ; confidence 0.962

300. f11015067.png ; $$t \subset v$$ ; confidence 0.885

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/5. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/5&oldid=43812