Namespaces
Variants
Actions

Symmetric polynomial

From Encyclopedia of Mathematics
Revision as of 10:10, 3 April 2015 by Bostelm (talk | contribs) (texifying (partial))
Jump to: navigation, search

A polynomial $f$ with coefficients in a field or a commutative associative ring $K$ with a unit, which is a symmetric function in its variables, that is, is invariant under all permutations of the variables:

\[ \label{symm} f(x_1,\ldots,x_n) = f(\pi(x_1),\ldots,\pi(x_n)). \]

The symmetric polynomials form the algebra $S(x_1,\ldots,x_n)$ over $K$.

The most important examples of symmetric polynomials are the elementary symmetric polynomials

\[ s_k(x_1,\ldots,x_n) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1} \ldots x_{i_k} \]

and the power sums

\[ p_k(x_1,\ldots,x_n) = x_1^k + \ldots + x_n^k. \]

The latter can be expressed in terms of elementary symmetric polynomials by recurrence formulas, called Newton's formulas:

For the elementary symmetric polynomials () of the roots of an arbitrary polynomial in one variable with leading coefficient 1, , one has (see Viète theorem).

The fundamental theorem on symmetric polynomials: Every symmetric polynomial is a polynomial in the elementary symmetric polynomials, and this representation is unique. In other words, the elementary symmetric polynomials are a set of free generators for the algebra . If the field has characteristic 0, then the polynomials also form a set of free generators of this algebra.

A skew-symmetric, or alternating, polynomial is a polynomial satisfying the relation (1) if is even and the relation

if is odd. Any skew-symmetric polynomial can be written in the form , where is a symmetric polynomial and

This representation is not unique, in view of the relation .

References

[1] A.G. Kurosh, "Higher algebra" , MIR (1972) (Translated from Russian)
[2] A.I. Kostrikin, "Introduction to algebra" , Springer (1982) (Translated from Russian)
[3] A.P. Mishina, I.V. Proskuryakov, "Higher algebra. Linear algebra, polynomials, general algebra" , Pergamon (1965) (Translated from Russian)


Comments

Another important set of symmetric polynomials, which appear in the representations of the symmetric group, are the Schur polynomials (-functions) . These are defined for any partition , and include as special cases the above functions, e.g. , (see, e.g., [a4], Chapt. VI).

In general, the discriminant of the polynomial with roots is defined as , and satisfies

with .

See Discriminant.

Let be the alternating group, consisting of the even permutations. The ring of polynomials of polynomials over a field obviously contains the elementary symmetric functions and . If is not of characteristic , the ring of polynomials is generated by and , and the ideal of relations is generated by . The condition is also necessary for the statement that every skew-symmetric polynomial is of the form with symmetric. More precisely, what is needed for this is that implies for .

References

[a1] N. Jacobson, "Basic algebra" , 1 , Freeman (1974)
[a2] A.G. Kurosh, "An introduction to algebra" , MIR (1971) (Translated from Russian)
[a3] B.L. van der Waerden, "Algebra" , 1 , Springer (1967) (Translated from German)
[a4] D.E. Littlewood, "The theory of group characters and matrix representations of groups" , Clarendon Press (1950)
[a5] V. Poénaru, "Singularités en présence de symmétrie" , Springer (1976) pp. 14ff
[a6] P.M. Cohn, "Algebra" , 1 , Wiley (1982) pp. 181
How to Cite This Entry:
Symmetric polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_polynomial&oldid=36386
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article