Hausdorff-Young inequalities
Estimates of the Fourier coefficients of functions in ; established by W.H. Young [1] and F. Hausdorff [2]. Let be an orthonormal system of functions on , let for all and for all and let , . If , then
(1) |
where are the Fourier coefficients of . If converges, there exists a function such that
(2) |
For one may take , and this series converges in .
The Hausdorff–Young inequalities (1) and (2) are equivalent. For they do not hold. Moreover, if and if , then there exists a continuous function such that its Fourier coefficients in the trigonometric system satisfy the condition . A qualitative statement of the Hausdorff–Young inequality (if , , then ) for unbounded orthonormal systems of functions does not hold, in general. An analogue of the Hausdorff–Young inequalities is valid for a broad class of function spaces.
References
[1] | W.H. Young, "On the determination of the summability of a function by means of its Fourier constants" Proc. London Math. Soc. (2) , 12 (1913) pp. 71–88 |
[2] | F. Hausdorff, "Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen" Math. Z. , 16 (1923) pp. 163–169 |
[3] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
[4] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
[5] | A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988) |
[6] | K. de Leeuw, J.P. Kahane, Y. Katznelson, "Sur les coefficients de Fourier des fonctions continues" C.R. Acad. Sci. Paris , 285 (1977) pp. 1001–1003 |
[7] | S.G. Krein, Yu.I. Petunin, E.M. Semenov, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian) |
Comments
Taking for the series gives for all .
Hausdorff-Young inequalities. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hausdorff-Young_inequalities&oldid=22559