Namespaces
Variants
Actions

User:Boris Tsirelson/sandbox1

From Encyclopedia of Mathematics
Jump to: navigation, search

$\newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\M}{\mathcal M} $ The term "universally measurable" may be applied to

Definition 1. Let $(X,\A)$ be a measurable space. A subset $A\subset X$ is called universally measurable if it is $\mu$-measurable for every finite measure $\mu$ on $(X,\A)$. In other words: $\mu_*(A)=\mu^*(A)$ where $\mu_*,\mu^*$ are the inner and outer measures for $\mu$, that is,

$ \mu_*(A) = \max\{\mu(B):B\in\A,B\subset A\}\,,\quad \mu^*(A) = \min\{\mu(B):B\in\A,B\supset A\}\,.$

(See [C, Sect. 8.4], [S, p. 170].)

Universally measurable sets evidently are a σ-algebra that contains the σ-algebra $\A$ of measurable sets.

Warning. Every measurable set is universally measurable, but an universally measurable set is generally not measurable! This terminological anomaly appears because the word "measurable" is used differently in two contexts, of measurable spaces and of measure spaces.

Definition 2. A separable metric space is called universally measurable if it is a universally measurable subset (as defined above) of its completion. Here the completion, endowed with the Borel σ-algebra, is treated as a measurable space. (See [S, p. 170], [D, Sect. 11.5].)

Definition 3. A measurable space is called universally measurable if it is isomorphic to some universally measurable metric space (as defined above) with the Borel σ-algebra. (See [S, p. 171].)

Theorem 1 (Shortt). A countably generated separated measurable space $(X,\A)$ is universally measurable if and only if for every finite measure $\mu$ on $(X,\A)$ there exists a subset $A\in\A$ of full measure (that is, $\mu(X\setminus A)=0$) such that $A$ (treated as a subspace) is itself a standard Borel space. ([S, Lemma 4])

Theorem 2 (Shortt). The following two conditions on a separable metric space are equivalent:

(a) it is a universally measurable metric space;
(b) the corresponding measurable space (with the Borel σ-algebra) is universally measurable.

Evidently, (a) implies (b); surprisingly, also (b) implies (a), which involves a Borel isomorphism (rather than isometry or homeomorphism) between two metric spaces.

References

[S] Rae M. Shortt, "Universally measurable spaces: an invariance theorem and diverse characterizations", Fundamenta Mathematicae 121 (1984), 169–176.   MR0765332   Zbl 0573.28018
[N] Togo Nishiura, "Absolute measurable spaces", Cambridge (2008).   MR2426721   Zbl 1151.54001
[C] Donald L. Cohn, "Measure theory", Birkhäuser (1993).   MR1454121   Zbl 0860.28001
[P] David Pollard, "A user's guide to measure theoretic probability", Cambridge (2002).   MR1873379   Zbl 0992.60001
[K] Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995).   MR1321597   Zbl 0819.04002
[BK] Howard Becker and Alexander S. Kechris, "The descriptive set theory of Polish group actions", Cambridge (1996).   MR1425877   Zbl 0949.54052
[D] Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989).   MR0982264   Zbl 0686.60001
[M] George W. Mackey, "Borel structure in groups and their duals", Trans. Amer. Math. Soc. 85 (1957), 134–165.   MR0089999   Zbl 0082.11201
[H] Paul R. Halmos, "Measure theory", v. Nostrand (1950).   MR0033869   Zbl 0040.16802
[R] Walter Rudin, "Principles of mathematical analysis", McGraw-Hill (1953).   MR0055409   Zbl 0052.05301
How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21123