Vandermonde determinant
A determinant of order of the type
(*) |
where are elements of a commutative ring. For any ,
If the ring has no zero divisors, the fundamental property of a Vandermonde determinant holds: if and only if not all the elements are different from each other. The determinant was first studied by A.T. Vandermonde for the case , and then in 1815 by A.L. Cauchy .
References
[1a] | A.T. Vandermonde, Histoire Acad. R. Sci. Paris (1771 (1774)) pp. 365–416 |
[1b] | A.T. Vandermonde, Histoire Acad. R. Sci. Paris (1772 (1776)) pp. 516–532 |
[2a] | A.A. Cauchy, "Mémoire sur les fonctions qui ne peuvent obtenir que deux values" J. École Polytechnique , 17 : 10 (1815) pp. 29- |
[2b] | A.L. Cauchy, "Mémoire sur les fonctions qui ne peuvent obtenir que deux values" , Oeuvres Sér. 2 , 1 , Gauthier-Villars (1905) pp. 91–169 |
Comments
The matrix
participating in (*) is called a Vandermonde matrix.
The Vandermonde matrix plays a role in approximation theory. E.g., using it one can prove that there is a unique polynomial of degree taking prescribed values at distinct points, cf. [a1], p. 58. See [a1], p. 64, Problem 13, for an algorithm to compute the inverse of a Vandermonde matrix.
References
[a1] | E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982) |
Vandermonde determinant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vandermonde_determinant&oldid=19300