Namespaces
Variants
Actions

Classical semi-simple ring

From Encyclopedia of Mathematics
Revision as of 17:25, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

An associative right Artinian (or, equivalently, left Artinian) ring with zero Jacobson radical. The Wedderburn–Artin theorem describes the structure of the classical semi-simple rings. The class of classical semi-simple rings can also be characterized by homological properties (see Homological classification of rings). Every group algebra of a finite group over a field of coprime characteristic with the order of the group is a classical semi-simple ring. Commutative classical semi-simple rings are finite direct sums of fields. Connected with classical semi-simple rings is Goldie's theorem, which states that a ring has a left classical ring of fractions that is a classical semi-simple ring if and only if it satisfies the maximum condition for left annihilators and does not contain any infinite direct sums of left ideals.

How to Cite This Entry:
Classical semi-simple ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Classical_semi-simple_ring&oldid=18426
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article